# Topology generated by a basis

## Statement

Let [ilmath]X[/ilmath] be a set and let [ilmath]\mathcal{B}\in\mathcal{P}(\mathcal{P}(X))[/ilmath] be any collection of subsets of [ilmath]X[/ilmath], then:

• [ilmath](X,\{\bigcup\mathcal{A}\ \vert\ \mathcal{A}\in\mathcal{P}(\mathcal{B})\})[/ilmath] is a topological space with [ilmath]\mathcal{B} [/ilmath] being a basis for the topology [ilmath]\{\bigcup\mathcal{A}\ \vert\ \mathcal{A}\in\mathcal{P}(\mathcal{B})\}[/ilmath]
• we have both of the following conditions:
1. [ilmath]\bigcup\mathcal{B}=X[/ilmath] (or equivalently: [ilmath]\forall x\in X\exists B\in\mathcal{B}[x\in B][/ilmath][Note 1]) and
2. [ilmath]\forall U,V\in\mathcal{B}\big[U\cap V\neq\emptyset\implies \forall x\in U\cap V\exists B\in\mathcal{B}[x\in W\wedge W\subseteq U\cap V]\big][/ilmath][Note 2]
• Caveat:[ilmath]\forall U,V\in\mathcal{B}\ \forall x\in U\cap V\ \exists W\in\mathcal{B}[x\in W\subseteq U\cap V][/ilmath] is commonly said or written; however it is wrong, this is slightly beyond just abuse of notation.[Note 3]

Note that we could also say:

• Let [ilmath]\mathcal{B} [/ilmath] be a collection of sets, then [ilmath](\bigcup\mathcal{B},\{\bigcup\mathcal{A}\ \vert\ \mathcal{A}\in\mathcal{P}(\mathcal{B})\})[/ilmath] is a topological space if and only if [ilmath]\forall U,V\in\mathcal{B}\ \forall x\in U\cap V\ \exists W\in\mathcal{B}[x\in W\subseteq U\cap V][/ilmath]
• This is just condition [ilmath]2[/ilmath] from above, clearly [ilmath]1[/ilmath] isn't needed as [ilmath]\bigcup\mathcal{B}=\bigcup\mathcal{B}[/ilmath] (obviously/trivially)