Topology induced by a metric
From Maths
(Redirected from Metric topology)
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Demote to grade B once there are links in place to this page
Definition
Let [ilmath](X,d)[/ilmath] be a metric space. Then there is a topology we can imbue on [ilmath]X[/ilmath], called the metric topology that can be defined in terms of the metric, [ilmath]d:X\times X\rightarrow\mathbb{R}_{\ge 0} [/ilmath].
We do this using the concept of topology generated by a basis. We claim ("Claim 1"):
- [ilmath]\mathcal{B}:\eq\left\{B_r(x)\ \vert\ x\in X\wedge r\in\mathbb{R}_{>0} \right\} [/ilmath] satisfies the conditions to generate a topology (and is a basis for that topology) - where [ilmath]B_\epsilon(p)[/ilmath]^{[Note 1]} denotes the open ball of radius [ilmath]\epsilon\in\mathbb{R}_{>0} [/ilmath] centred at [ilmath]p\in X[/ilmath]
The resulting topological space, say [ilmath](X,\mathcal{ J })[/ilmath], has basis [ilmath]\mathcal{B} [/ilmath]
- Explicitly the topology is [math]\mathcal{J}:\eq\left\{\left. \bigcup_{B\in\mathcal{F} }B\ \right\vert\ \mathcal{F}\in\mathcal{P}(\mathcal{B})\right\} [/math]
- Notice [ilmath]\bigcup_{B\in\emptyset} B\eq\emptyset[/ilmath] - hence the empty-set is open - as required.
- Notice also that [ilmath]\bigcup{B\in\mathcal{B} }B\eq X[/ilmath] - obvious as [ilmath]\mathcal{B} [/ilmath] contains (among others) an open ball centred at each point in [ilmath]X[/ilmath] and each point is in that open ball at least. TODO: Copy and paste a proof from elsewhere
Consequences
Grade: A*
This page requires some work to be carried out
Some aspect of this page is incomplete and work is required to finish it
The message provided is:
The message provided is:
These should have more far-reaching consequences on the site. Like on the neighbourhood page and such
Proof of claims
- Claim 1: [ilmath]\mathcal{B} [/ilmath] satisfies the conditions to generate a topology for which it is a basis - see The set of all open balls of a metric space are able to generate a topology and are a basis for that topology
Notes
- ↑ For convenience I restate this now:
- [ilmath]B_\epsilon(p):\eq\{ x\in X\ \vert d(x,p)<\epsilon\} [/ilmath]
References