Cauchy-Schwarz inequality
There are two forms of this inequality:
- ∑ni=1aibi≤√∑ni=1a2i√∑ni=1b2i - the common and
- \vert\langle x,y\rangle\vert\le\Vert x\Vert \Vert y\Vert - the rare but more general
TODO: More general version http://math.stackexchange.com/questions/1357968/cauchy-schwarz-inequality-proof-but-not-the-usual-one
- Update: Cauchy-Schwarz inequality for inner product spaces is a proof of the second form - note that \Vert x\Vert:\eq\sqrt{\langle x,x\rangle} is the norm induced by the inner product Alec (talk) 13:04, 4 April 2017 (UTC)
Contents
[hide]Statement
For any a_1,...,a_n,b_1,...,b_n\in\mathbb{R}\ we will have
\sum^n_{i=1}a_ib_i\le\sqrt{\sum^n_{i=1}a_i^2}\sqrt{\sum^n_{i=1}b_i^2}
Proof
Basis for argument
Consider first the function f:\mathbb{R}\rightarrow\mathbb{R} give by f(x)=ax^2+bx+c
If f(x)\ge 0 then using the quadratic equation we know the solutions (to f(x)=0) will at be: x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
As we want f(x)\ge 0 we must have either a repeated solution (a point where f(x)=0) or no real solutions.
In the first case (repeated solutions) we require b^2-4ac=0 as then \frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-b\pm0}{2a}=\frac{-b}{2a} - our 2 repeated solutions.
In the second case we require b^2-4ac<0 as then the \sqrt{b^2-4ac} term will be imaginary, thus giving us no real solutions.
Conclusion of first argument
We conclude from this that if a quadratic ax^2+bx+c is to be \ge0 then b^2-4ac\le 0
Core of argument
In the basis we required a function, f(x), we will now build this.
Take \sum^n_{i=1}(a_it+b_i)^2 and notice:
- \sum^n_{i=1}(a_it+b_i)^2=\sum^n_{i=1}(a_i^2t^2+2ta_ib_i+b_i^2)=t^2\sum^n_{i=1}a_i^2+2t\sum^n_{i=1}a_ib_i+\sum^n_{i=1}b_i^2 - which is a quadratic in t
- \forall a_i,b_i,t\in\mathbb{R}\ (a_it+b_i)^2\ge 0, so \sum^n_{i=1}(a_it+b_i)^2\ge0 - our quadratic in t is \ge0
Using the above this means b^2-4ac\le 0, where:
- a=\sum^n_{i=1}a_i^2
- b=2\sum^n_{i=1}a_ib_i
- c=\sum^n_{i=1}b_i^2
Conclusion of argument
4\left(\sum^n_{i=1}a_ib_i\right)^2-4\left(\sum^n_{i=1}a_i^2\right)\left(\sum^n_{i=1}b_i^2\right)\le 0\iff\left(\sum^n_{i=1}a_ib_i\right)^2\le\left(\sum^n_{i=1}a_i^2\right)\left(\sum^n_{i=1}b_i^2\right)\iff\left|\sum^n_{i=1}a_ib_i\right|\le\sqrt{\sum^n_{i=1}a_i^2}\sqrt{\sum^n_{i=1}b_i^2}
But as x\le|x| (recall |\cdot| denotes absolute value) we see:
\iff\sum^n_{i=1}a_ib_i\le\sqrt{\sum^n_{i=1}a_i^2}\sqrt{\sum^n_{i=1}b_i^2}
QED