Difference between revisions of "Nth homotopy group"

From Maths
Jump to: navigation, search
(Created page with "{{DISPLAYTITLE:{{M|n^\text{th} }} homotopy group}} {{Stub page|grade=A*|msg=Not super urgent, but would be useful - demote to {{C|C}} once the content is less note-like}} __TO...")
 
m
 
Line 1: Line 1:
 
{{DISPLAYTITLE:{{M|n^\text{th} }} homotopy group}}
 
{{DISPLAYTITLE:{{M|n^\text{th} }} homotopy group}}
 +
: '''Note: ''' the [[fundamental group]] is {{M|\pi_1(X,p)}}
 
{{Stub page|grade=A*|msg=Not super urgent, but would be useful - demote to {{C|C}} once the content is less note-like}}
 
{{Stub page|grade=A*|msg=Not super urgent, but would be useful - demote to {{C|C}} once the content is less note-like}}
 
__TOC__
 
__TOC__
Line 29: Line 30:
 
** {{M|f\circ\pi}} is [[continuous]] {{iff}} {{M|f}} is continuous
 
** {{M|f\circ\pi}} is [[continuous]] {{iff}} {{M|f}} is continuous
 
That gives us an association between continuous maps of the form {{M|f\circ\pi}} with some constraints. Blah blah blah, something like that.
 
That gives us an association between continuous maps of the form {{M|f\circ\pi}} with some constraints. Blah blah blah, something like that.
 +
 +
 +
[[Pointed topological space|Pointed topological spaces]] are involved.
 
<div style="clear:both;"></div>
 
<div style="clear:both;"></div>
 
==References==
 
==References==
 
<references/>
 
<references/>
 
{{Definition|Topology|Algebraic Topology}}
 
{{Definition|Topology|Algebraic Topology}}

Latest revision as of 22:17, 12 December 2016

Note: the fundamental group is π1(X,p)
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Not super urgent, but would be useful - demote to C once the content is less note-like

Definition

Let (X,J) be a topological space with x0X being any fixed point. The nth homotopy group, written πn(X,x0) is defined as follows:

  • The underlying set of the group is: πn(X,x0):=[(Sn,p),(X,x0)]
    • Where [(Sn,p),(X,x0)] denotes equivalence classes of continuous maps where f(p)=x0 under the equivalence relation of homotopy relative to p, i.e.:
      • [(Sn,p),(X,x0)]:={fC(Sn,X) | f(p)=x0}(()  () (Rel {p}))

Caveat:I think, the book... pointed spaces are really not that special, I'm using Books:Topology and Geometry - Glen E. Bredon for this

Noting that:

  • (Sn,p)RS(Sn1) where RS denotes the reduced suspension of a space we see:
    • (Sn,p)RS(Sn1,p):=(Sn1×I({p}×I)(Sn1×{0,1}),π(p,i)) for π the quotient map of some sort or other, where iI doesn't matter, as they're all the same under the quotient map.
      • I:=[0,1]R

Notes

Diagram

Although not the best quotient we do have the situation on the right:

That gives us an association between continuous maps of the form fπ with some constraints. Blah blah blah, something like that.


Pointed topological spaces are involved.

References