Difference between revisions of "Useful inequalities"
From Maths
(Created page with "Category:Useful inequalities Here is a list of useful inequalities: {| class="wikitable" border="1" |- ! Name ! Inequality |- | Cauchy-Schwarz inequality | For <mat...") |
m |
||
Line 6: | Line 6: | ||
{| class="wikitable" border="1" | {| class="wikitable" border="1" | ||
|- | |- | ||
− | |||
! Inequality | ! Inequality | ||
+ | ! Name | ||
+ | ! Conditions | ||
|- | |- | ||
+ | | <math>\sum^n_{i=1}a_ib_i\le\sqrt{\sum^n_{k=1}a_i^2}\sqrt{\sum^n_{i=1}b_i^2}</math> | ||
| [[Cauchy-Schwarz inequality]] | | [[Cauchy-Schwarz inequality]] | ||
− | | For <math>a_1,...,a_n,b_1,...,b_n\in\mathbb{R}</math> | + | | For <math>a_1,...,a_n,b_1,...,b_n\in\mathbb{R}</math> |
+ | |- | ||
+ | | <math>\left(\sum^n_{i=1}|a_i+b_i|^p\right)^\frac{1}{p}\le\left(\sum^n_{i=1}|a_i|^p\right)^\frac{1}{p}+\left(\sum^n_{i=1}|b_i|^p\right)^\frac{1}{p}</math> | ||
+ | | [[Minkowski's inequality]] | ||
+ | | For <math>p\ge 1</math> and <math>a_1,...,a_n,b_1,...,b_n\in\mathbb{R}</math> | ||
|} | |} |
Latest revision as of 20:15, 21 April 2015
Here is a list of useful inequalities:
Inequality | Name | Conditions |
---|---|---|
n∑i=1aibi≤√n∑k=1a2i√n∑i=1b2i | Cauchy-Schwarz inequality | For a1,...,an,b1,...,bn∈R |
(n∑i=1|ai+bi|p)1p≤(n∑i=1|ai|p)1p+(n∑i=1|bi|p)1p | Minkowski's inequality | For p≥1 and a1,...,an,b1,...,bn∈R |