# The ell p spaces

This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Important page

## Definition

Let [ilmath]p\in[1,+\infty]:\eq\{x\in\overline{\mathbb{R} }\ \vert 1\le x\} [/ilmath] be given. We define the [ilmath]\ell^p[/ilmath] normed space as follows:

• If [ilmath]p\in\mathbb{R} [/ilmath][Note 1] then:
• $\ell^p$$:\eq\left\{(x_n)_{n\in\mathbb{N} }\subseteq\mathbb{C}\ \left\vert\ \sum_{n\eq 1}^\infty \vert x_n\vert^p<+\infty\right\}\right.$
• With the norm: $\Vert\cdot\Vert_p:(x_n)_{n\in\mathbb{N} }\mapsto\sqrt[p]{\sum^\infty_{n\eq 1}\vert x_n\vert^p }$ - often written as $\Vert\cdot\Vert_p:(x_n)_{n\in\mathbb{N} }\mapsto\left(\sum^\infty_{n\eq 1}\vert x_n\vert^p\right)^{\frac{1}{p} }$ because the pth-root rendering is pretty poor.
• If [ilmath]p\eq+\infty[/ilmath] then:
• $\ell^\infty$$:\eq\left\{(x_n)_{n\in\mathbb{N} }\subseteq\mathbb{C}\ \left\vert\ \mathop{\text{Sup} }_{n\in\mathbb{N} }(\vert x_n\vert)<+\infty\right.\right\}$
• with the norm: $\Vert\cdot\Vert_\infty:(x_n)_{n\in\mathbb{N} }\mapsto\mathop{\text{Sup} }_{n\in\mathbb{N} }(\vert x_n\vert)$

### Justification for [ilmath]+\infty[/ilmath] being included

On [ilmath]\mathbb{R}^n[/ilmath] and [ilmath]\mathbb{C}^n[/ilmath] we also have the p-norm, just as a finite sum rather than an infinite one as shown above. It is claimed that[1]:

• $\lim_{p\rightarrow +\infty}(\Vert(x_1,\ldots,x_n)\Vert_p)\eq\Vert(x_1,\ldots,x_n)\Vert_\infty$

The same reference also says the proof that these are norms is basically the same.

## Notes

1. So [ilmath]p\neq+\infty[/ilmath]