# Real sequence

From Maths

**Stub grade: D**

This page is a stub

This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:

Unimportant page

## Contents

## Definition

A *real sequence* is the name given to a sequence, [ilmath](a_n)_{n\in\mathbb{N} }\subset\mathbb{R} [/ilmath] - literally a sequence of real numbers - but where things like convergence are considered with the usual metric of the reals, that is:

- [ilmath]d(x,y):\eq\vert x-y\vert[/ilmath] - the absolute value of the difference between [ilmath]x[/ilmath] and [ilmath]y[/ilmath].

We can subtract [ilmath]y[/ilmath] from [ilmath]x[/ilmath] as the reals are a field.

## References

Grade: D

This page requires references, it is on a to-do list for being expanded with them.

Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.

The message provided is:

The message provided is:

It should be obvious a real sequence is a sequence of reals!