# Quotient by an equivalence relation

From Maths

**Stub grade: A**

This page is a stub

This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:

Needs linking to other sections, more work, so forth. See what's on the equivalence relation page, make sure it's all inline with this

## Contents

## Definition

Let [ilmath]X[/ilmath] be a set and let [ilmath]\sim\subseteq X\times X[/ilmath] be an equivalence relation on [ilmath]X[/ilmath]. Then the *quotient* of [ilmath]X[/ilmath] by [ilmath]\sim[/ilmath], denoted [ilmath]X/\sim[/ilmath] or [ilmath]\frac{X}{\sim} [/ilmath] is defined as follows:

- [ilmath]\frac{X}{\sim}:\eq\{[x]\ \vert\ x\in X\} [/ilmath] where [ilmath][x][/ilmath] denotes the equivalence class of [ilmath]x[/ilmath].

Yes, [ilmath]\frac{X}{\sim} [/ilmath] is the set of equivalence classes, it is that simple.

### Canonical projection

With [ilmath]X[/ilmath], [ilmath]\sim[/ilmath] and [ilmath]\frac{X}{\sim} [/ilmath] we also get a map:

- [ilmath]\pi:X\rightarrow\frac{X}{\sim} [/ilmath] given by [ilmath]\pi:x\mapsto [x][/ilmath]
- Other commonly used letters include: [ilmath]p[/ilmath] and [ilmath]\rho[/ilmath]

**Claim 1: this map is a surjection**

## Proof of claims

### Claim 1: [ilmath]\pi:X\rightarrow\frac{X}{\sim} [/ilmath] is a surjection

We wish to show: [ilmath]\forall y\in\frac{X}{\sim}\exists x\in X[\pi(x)\eq y][/ilmath]

- Let [ilmath]y\in\frac{X}{\sim} [/ilmath] be given
- Choose [ilmath]a\in y[/ilmath] (so now we may write [ilmath][a]\eq y[/ilmath]. Any [ilmath]a[/ilmath] will do.
- Note that the equivalence classes are either equal or disjoint, suppose [ilmath]b\in y[/ilmath], this means [ilmath]a\sim b[/ilmath], so [ilmath][a]\eq [b][/ilmath]

- Choose [ilmath]x:\eq a[/ilmath]
- Then [ilmath]\pi(x)\eq [x]:\eq[a]\eq y[/ilmath]

- Choose [ilmath]a\in y[/ilmath] (so now we may write [ilmath][a]\eq y[/ilmath]. Any [ilmath]a[/ilmath] will do.
- Since [ilmath]y[/ilmath] was arbitrary we have shown this for all [ilmath]y\in\frac{X}{\sim} [/ilmath]