# Monotone convergence theorem for non-negative numerical measurable functions

This page is provisional and the information it contains may change before this notice is removed (in a backwards incompatible way). This usually means the content is from one source and that source isn't the most formal, or there are many other forms floating around. It is on a to-do list for being expanded.The message provided is:
Books disagree here, the version here may have a bias towards what I will be examined on

## Statement

Let [ilmath](X,\mathcal{A},\mu)[/ilmath] be a measure space and let [ilmath](f_n)_{n\in\mathbb{N} }\subseteq\mathcal{M}\big(\mathcal{A},\mathcal{B}(\bar{\mathbb{R} }_{\ge 0})\big)[/ilmath][Note 1] be a sequence of measurable functions, [ilmath]f_n:X\rightarrow[0,+\infty]\eq\bar{\mathbb{R} }_{\ge 0} [/ilmath], then[1][2]:

• if [ilmath]\forall n\in\mathbb{N}[f_n\le f_{n+1}][/ilmath][Note 2] - i.e. [ilmath](f_n)_{n\in\mathbb{N} } [/ilmath] is a non-decreasing sequence - then:
• $\int \mathop{\text{lim} }_{n\rightarrow\infty} \Big(f_n\Big)\ \mathrm{d}\mu\eq\mathop{\text{lim} }_{n\rightarrow\infty}\left(\int f_n\ \mathrm{d}\mu\right)$[Note 3]

This could be phrased differently; as an alternative statement:

• Define [ilmath]f:X\rightarrow[0,+\infty][/ilmath] by $f:x\mapsto\mathop{\text{lim} }_{n\rightarrow\infty}\Big(f_n(x)\Big)$, this limit exists forall [ilmath]x\in X[/ilmath] as we allow the value [ilmath]+\infty[/ilmath].
• Then we have:
1. [ilmath]f\in\mathcal{M}\big(\mathcal{A},\mathcal{B}(\bar{\mathbb{R} }_{\ge 0})\big)[/ilmath][Todo 1] - [ilmath]f[/ilmath] is a measurable function itself - and
2. $\int f\ \mathrm{d}\mu\eq\mathop{\text{lim} }_{n\rightarrow\infty}\left(\int f_n\ \mathrm{d}\mu\right)$

## Proof

This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
Done on paper? Find it and post here? Do again? Can be found in[1] before claim 9.11 which is (a form of) Fatou's lemma