Alec's expected value trick

From Maths
Jump to: navigation, search
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} }

Lemma

Suppose is a non-negative real random-variable, then I have found a way to calculate the expected value of X, \E{X} :

  • We claim: \E{X}\eq\int^\infty_{0}\big(1-\P{X<x}\big)\mathrm{d}x or \E{X}\eq\int^\infty_0\P{X\ge x}\mathrm{d}x

Statement

We should be able to use this for a general real random variable by considering conditional random variables (via conditional probability) for the positive and negative parts respectively.

Proof of lemma