Difference between revisions of "Notes:Poisson and Gamma distribution"
From Maths
(Changing computer, so saving work) |
(Saving work, want a second set of eyes before proceeding) |
||
Line 24: | Line 24: | ||
* {{M|F(t)\eq\P{T\le t}\eq 1-\P{X_t\le k-1} }}, for {{M|k\in\mathbb{N}_{\ge 1} }} remember | * {{M|F(t)\eq\P{T\le t}\eq 1-\P{X_t\le k-1} }}, for {{M|k\in\mathbb{N}_{\ge 1} }} remember | ||
==Evaluation== | ==Evaluation== | ||
− | We now compute {{M|\P{T\le t} }} | + | We now compute {{M|\P{T\le t} }}{{M|\newcommand{\d}[0]{\mathrm{d} } }}{{M|\newcommand{\ddt}[1]{\frac{\d}{\d t}\left[{#1}\middle]\right\vert_{t} } }} |
* Let's start with {{M|\P{T\le t} \eq 1-\P{X_t\le k-1} }} | * Let's start with {{M|\P{T\le t} \eq 1-\P{X_t\le k-1} }} | ||
− | *: {{MM|\eq 1-\left(\sum^{k-1}_{i\eq 0}\P{X_t\eq i}\right)}} - notice the sum starts at {{M|i\eq 0}}, as {{M|k\ge 1}} we must at least have one term, the {{M|(i\eq 0)^\text{th} }} one. | + | ** {{M|\P{T\le t} }} |
− | *: {{MM|\eq 1-\left(\sum^{k-1}_{i\eq 0}e^{-t\lambda}\frac{(t\lambda)^i}{i!}\right)}} | + | **: {{MM|\eq 1-\left(\sum^{k-1}_{i\eq 0}\P{X_t\eq i}\right)}} - notice the sum starts at {{M|i\eq 0}}, as {{M|k\ge 1}} we must at least have one term, the {{M|(i\eq 0)^\text{th} }} one. |
+ | **: {{MM|\eq 1-\left(\sum^{k-1}_{i\eq 0}e^{-t\lambda}\frac{(t\lambda)^i}{i!}\right)}} | ||
+ | **: {{MM|\eq 1-e^{-t\lambda}-e^{-t\lambda}\sum^{k-1}_{i\eq 1}\frac{(t\lambda)^i}{i!} }} - note the sum now may be zero if {{M|k\eq 1}} otherwise it will have terms. | ||
+ | ** However we will write it as: | ||
+ | *** {{MM|\P{T\le t}\eq 1-e^{-\lambda t}+\sum^{k-1}_{i\eq 1}\frac{-\lambda^i}{i!}\big(t^i\cdot e^{-\lambda t}\big)}} which will help greatly with the next step | ||
+ | * We now must [[differentiate]] this to find the [[pdf]], {{MM|f(t)\eq F'(t)\eq \frac{\mathrm{d} }{\mathrm{d} t}\Big[F(t)\Big]\Big\vert_{t} }} | ||
+ | ** {{MM|f(t)\eq 0-\ddt{e^{-\lambda t} }+\sum^{k-1}_{i\eq 1}\frac{-\lambda^i}{i!}\left(\ddt{t^i\cdot e^{-\lambda t} }\right) }} | ||
+ | *** Let us look at the components | ||
+ | **** First, {{M|\ddt{e^{-\lambda t} } \eq -\lambda e^{-\lambda t} }} by {{XXX|link thing here that talks about differentiation of e raised to a power of a function of the variable}} - involves [[chain rule]] | ||
+ | **** Next we apply the [[product rule]] to {{M|\ddt{t^i\cdot e^{-\lambda t} } }} | ||
+ | ****: {{M|\eq t^i\ddt{e^{-\lambda t} }+e^{-\lambda t}\ddt{t^i} }} | ||
+ | ****: {{M|\eq -\lambda t^i e^{-\lambda t}+ie^{-\lambda t}t^{i-1} }} - this uses the first result | ||
+ | ****: {{M|\eq e^{-\lambda t}\big(it^{i-1}-\lambda t^i\big)}} | ||
+ | *** thus: {{M|f(t)}} | ||
+ | ***: {{MM|\eq \lambda e^{-\lambda t}+\sum^{k-1}_{i\eq 1}\frac{-\lambda^i}{i!}e^{-\lambda t}(it^{i-1}-\lambda t^i) }} | ||
==Notes== | ==Notes== | ||
<references group="Note"/> | <references group="Note"/> |
Latest revision as of 18:58, 19 January 2018
- These are PRELIMINARY NOTES: I got somewhere and don't want to lose the work on paper.
Contents
[hide]\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} }
Initial notes
Here we will use X\sim\text{Poi} (\lambda) for \lambda\in\mathbb{R}_{>0} as "events per unit time" for simplicity of conceptualising what's going on, in practice it wont matter what continuous unit is used.
We use the following:
- Let k\in\mathbb{N}_{\ge 1} , we are interested in the distribution of the time until k events have accumulated.
- Let T be the time until k accumulations, so:
- F(t):\eq\P{T\le t} \eq 1-\P{T>t} [Note 1] and we can use \P{T>t} to be "fewer events than k occurred for the range of time [0,t]" or to be more formal / specific:
- \P{T>t}\eq\P{\text{the number of events that occurred for the range of time }[0,t]<k}
- \eq\P{\text{the number of events that occurred for the range of time }[0,t]\le k-1}
- \P{T>t}\eq\P{\text{the number of events that occurred for the range of time }[0,t]<k}
- F(t):\eq\P{T\le t} \eq 1-\P{T>t} [Note 1] and we can use \P{T>t} to be "fewer events than k occurred for the range of time [0,t]" or to be more formal / specific:
Lastly,
- If \lambda is the rate of events per unit time, then for t units of time t\lambda is the rate of events per t-units of time, so we define:
- X_t\sim\text{Poi}(t\lambda)
- And we observe:
- \P{\text{the number of events that occurred for the range of time }[0,t]\le k-1}
- \eq \P{X_t\le k-1}
- \P{\text{the number of events that occurred for the range of time }[0,t]\le k-1}
We have now discovered:
- F(t)\eq\P{T\le t}\eq 1-\P{X_t\le k-1} , for k\in\mathbb{N}_{\ge 1} remember
Evaluation
We now compute \P{T\le t} \newcommand{\d}[0]{\mathrm{d} } \newcommand{\ddt}[1]{\frac{\d}{\d t}\left[{#1}\middle]\right\vert_{t} }
- Let's start with \P{T\le t} \eq 1-\P{X_t\le k-1}
- \P{T\le t}
- \eq 1-\left(\sum^{k-1}_{i\eq 0}\P{X_t\eq i}\right) - notice the sum starts at i\eq 0, as k\ge 1 we must at least have one term, the (i\eq 0)^\text{th} one.
- \eq 1-\left(\sum^{k-1}_{i\eq 0}e^{-t\lambda}\frac{(t\lambda)^i}{i!}\right)
- \eq 1-e^{-t\lambda}-e^{-t\lambda}\sum^{k-1}_{i\eq 1}\frac{(t\lambda)^i}{i!} - note the sum now may be zero if k\eq 1 otherwise it will have terms.
- However we will write it as:
- \P{T\le t}\eq 1-e^{-\lambda t}+\sum^{k-1}_{i\eq 1}\frac{-\lambda^i}{i!}\big(t^i\cdot e^{-\lambda t}\big) which will help greatly with the next step
- \P{T\le t}
- We now must differentiate this to find the pdf, f(t)\eq F'(t)\eq \frac{\mathrm{d} }{\mathrm{d} t}\Big[F(t)\Big]\Big\vert_{t}
- f(t)\eq 0-\ddt{e^{-\lambda t} }+\sum^{k-1}_{i\eq 1}\frac{-\lambda^i}{i!}\left(\ddt{t^i\cdot e^{-\lambda t} }\right)
- Let us look at the components
- First, \ddt{e^{-\lambda t} } \eq -\lambda e^{-\lambda t} by TODO: link thing here that talks about differentiation of e raised to a power of a function of the variable- involves chain rule
- Next we apply the product rule to \ddt{t^i\cdot e^{-\lambda t} }
- \eq t^i\ddt{e^{-\lambda t} }+e^{-\lambda t}\ddt{t^i}
- \eq -\lambda t^i e^{-\lambda t}+ie^{-\lambda t}t^{i-1} - this uses the first result
- \eq e^{-\lambda t}\big(it^{i-1}-\lambda t^i\big)
- First, \ddt{e^{-\lambda t} } \eq -\lambda e^{-\lambda t} by
- thus: f(t)
- \eq \lambda e^{-\lambda t}+\sum^{k-1}_{i\eq 1}\frac{-\lambda^i}{i!}e^{-\lambda t}(it^{i-1}-\lambda t^i)
- Let us look at the components
- f(t)\eq 0-\ddt{e^{-\lambda t} }+\sum^{k-1}_{i\eq 1}\frac{-\lambda^i}{i!}\left(\ddt{t^i\cdot e^{-\lambda t} }\right)