User:Alec/Modules/Rings and modules

From Maths
Jump to: navigation, search

Translations

His My Comment
Commutative ring q-ring (AKA: cu-ring)
Ring u-ring
[ilmath]\mathbb{Z}_n[/ilmath] unsure See: Integers modulo n

Definitions

Other work

Possible distributivity page

{{Stub page|grade=A|msg=Proper stub page, I'd love a reference}} ==Definition== Let {{M|(R,\oplus,\odot)}} be a [[tuple]] consisting of a ''[[non-empty]]'' [[set]] {{M|R}}, and two [[binary operations]] (a kind of [[map]] where rather than writing {{M|f(a,b)}} we write {{M|afb}}): # {{M|\oplus:R\times R\rightarrow R}} # {{M|\odot:R\times R\rightarrow R}} Then we say for {{M|(R,\oplus,\odot)}} that: * "'''{{M|\oplus }} is left distributive over {{M|\odot}}'''" or "{{M|(R,\oplus,\odot)}} is left distributive" if - {{M|1=\forall a,b,c\in R[x\odot(y\oplus z)=(x\odot y)\oplus(x\odot z)]}} * "'''{{M|\oplus }} is right distributive over {{M|\odot}}'''" or "{{M|(R,\oplus,\odot)}} is right distributive" if - {{M|1=\forall a,b,c\in R[(x\oplus y)\odot z=(x\odot z)\oplus(y\odot z)]}} * "'''{{M|\oplus }} is distributive over {{M|\odot}}'''" or "{{M|(R,\oplus,\odot)}} is left distributive" if {{M|\oplus}} is both right and left distributive over {{M|\otimes}} Where it is understood that {{M|\oplus}} is the first operation in the tuple and {{M|\odot}} the second. Note that {{M|(R,\odot,\oplus)}} being left/right or just distributive is a totally different thing. There are slightly different forms of distributivity, but all of them have "first left-distributive over second if thing first (thing second thing) = (thing first