Difference between revisions of "Norm/Heading"

From Maths
Jump to: navigation, search
(Created page with "{{Infobox|title=Norm|above=<span style="font-size:2em;">{{M|\Vert\cdot\Vert:V\rightarrow\mathbb{R} }}</span><br/>Where {{M|V}} is a vector space over the field {{M|\ma...")
 
m
Line 1: Line 1:
{{Infobox|title=Norm|above=<span style="font-size:2em;">{{M|\Vert\cdot\Vert:V\rightarrow\mathbb{R} }}</span><br/>Where {{M|V}} is a [[vector space]] over the [[field]] {{M|\mathbb{R} }} or {{M|\mathbb{C} }}}}A ''norm'' is a an abstraction of the notion of the "length of a vector". Every norm is a [[metric]] and every [[inner product]] is a norm (see [[Subtypes of topological spaces]] for more information), thus every ''normed vector space'' is a [[topological space]] to, so all the [[topology theorems]] apply. Norms are especially useful in [[functional analysis]] and also for [[differentiation]].
+
{{Infobox
 +
|title=Norm
 +
|above=<span style="font-size:2em;">{{M|\Vert\cdot\Vert:V\rightarrow\mathbb{R} }}</span><br/>Where {{M|V}} is a [[vector space]] over the [[field]] {{M|\mathbb{R} }} or {{M|\mathbb{C} }}
 +
|header1=[[subtypes of topological spaces|relation to other topological spaces]]
 +
|label1=''is a''
 +
|data1=<nowiki/>
 +
* [[metric space]]
 +
* [[topological space]]
 +
|label2=''contains all''
 +
|data2=<nowiki/>
 +
* [[inner product space|inner product spaces]]
 +
|header3=Related objects
 +
|label3=Induced [[metric]]
 +
|data3=<nowiki/>
 +
* {{M|1=d_{\Vert\cdot\Vert}:V\times V\rightarrow\mathbb{R}_{\ge 0} }}
 +
* {{M|1=d_{\Vert\cdot\Vert}:(x,y)\mapsto\Vert x-y\Vert}}
 +
|label4=Induced by [[inner product]]
 +
|data4=<nowiki/>
 +
* {{M|1=\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:V\rightarrow\mathbb{R}_{\ge 0} }}
 +
* {{M|1=\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:x\mapsto\sqrt{\langle x,x\rangle} }}
 +
}}A ''norm'' is a an abstraction of the notion of the "length of a vector". Every norm is a [[metric]] and every [[inner product]] is a norm (see [[Subtypes of topological spaces]] for more information), thus every ''normed vector space'' is a [[topological space]] to, so all the [[topology theorems]] apply. Norms are especially useful in [[functional analysis]] and also for [[differentiation]].

Revision as of 11:50, 8 January 2016

Norm
[ilmath]\Vert\cdot\Vert:V\rightarrow\mathbb{R} [/ilmath]
Where [ilmath]V[/ilmath] is a vector space over the field [ilmath]\mathbb{R} [/ilmath] or [ilmath]\mathbb{C} [/ilmath]
relation to other topological spaces
is a
contains all
Related objects
Induced metric
  • [ilmath]d_{\Vert\cdot\Vert}:V\times V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
  • [ilmath]d_{\Vert\cdot\Vert}:(x,y)\mapsto\Vert x-y\Vert[/ilmath]
Induced by inner product
  • [ilmath]\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
  • [ilmath]\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:x\mapsto\sqrt{\langle x,x\rangle}[/ilmath]
A norm is a an abstraction of the notion of the "length of a vector". Every norm is a metric and every inner product is a norm (see Subtypes of topological spaces for more information), thus every normed vector space is a topological space to, so all the topology theorems apply. Norms are especially useful in functional analysis and also for differentiation.