Difference between revisions of "Norm"

From Maths
Jump to: navigation, search
(Missed 4th property)
m
Line 6: Line 6:
 
# <math>\forall x,y\in V\ \|x+y\|\le\|x\|+\|y\|</math> - a form of the [[Triangle inequality|triangle inequality]]
 
# <math>\forall x,y\in V\ \|x+y\|\le\|x\|+\|y\|</math> - a form of the [[Triangle inequality|triangle inequality]]
  
 +
Often parts 1 and 2 are combined into the statement
 +
* <math>\|x\|\ge 0\text{ and }\|x\|=0\iff x=0</math> so only 3 requirements will be stated.
 +
I don't like this
  
 +
==Examples==
 +
===The Euclidean Norm===
 +
The Euclidean norm is denoted <math>\|\cdot\|_2</math>
 +
 +
 +
Here for <math>x\in\mathbb{R}^n</math> we have:
 +
 +
<math>\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}</math>
 +
{{Todo|proof}}
 
{{Definition|Linear Algebra}}
 
{{Definition|Linear Algebra}}

Revision as of 16:18, 7 March 2015

Definition

A norm on a vector space [ilmath](V,F)[/ilmath] is a function [math]\|\cdot\|:V\rightarrow\mathbb{R}[/math] such that:

  1. [math]\forall x\in V\ \|x\|\ge 0[/math]
  2. [math]\|x\|=0\iff x=0[/math]
  3. [math]\forall \lambda\in F, x\in V\ \|\lambda x\|=|\lambda|\|x\|[/math] where [math]|\cdot|[/math] denotes absolute value
  4. [math]\forall x,y\in V\ \|x+y\|\le\|x\|+\|y\|[/math] - a form of the triangle inequality

Often parts 1 and 2 are combined into the statement

  • [math]\|x\|\ge 0\text{ and }\|x\|=0\iff x=0[/math] so only 3 requirements will be stated.

I don't like this

Examples

The Euclidean Norm

The Euclidean norm is denoted [math]\|\cdot\|_2[/math]


Here for [math]x\in\mathbb{R}^n[/math] we have:

[math]\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}[/math]


TODO: proof