Difference between revisions of "Metric space"

From Maths
Jump to: navigation, search
(Created page with " ==Definition of a metric space== A metric space is a set <math>X</math> coupled with a "distance function" <math>d:X\times X\rightarrow\mathbb{R}</math> with the properties...")
 
m
Line 13: Line 13:
  
 
==Examples of metrics==
 
==Examples of metrics==
===Euclidian Metric on <math>\mathbb{R}^n</math>===
+
===Euclidian Metric===
 +
The Euclidian metric on <math>\mathbb{R}^n</math> is defined as follows:
 
For <math>x=(x_1,...,x_n)\in\mathbb{R}^n</math> and <math>y=(y_1,...,y_n)\in\mathbb{R}^n</math> we define the Euclidian metric by:
 
For <math>x=(x_1,...,x_n)\in\mathbb{R}^n</math> and <math>y=(y_1,...,y_n)\in\mathbb{R}^n</math> we define the Euclidian metric by:
  

Revision as of 21:14, 12 February 2015

Definition of a metric space

A metric space is a set [math]X[/math] coupled with a "distance function" [math]d:X\times X\rightarrow\mathbb{R}[/math] with the properties (for [math]x,y,z\in X[/math])

  1. [math]d(x,y)\ge 0[/math]
  2. [math]d(x,y)=0\iff x=y[/math]
  3. [math]d(x,y)=d(y,x)[/math]
  4. [math]d(x,z)\le d(x,y)+d(y,z)[/math] - the Triangle Inequality

We will denote a metric space as [math](X,d)[/math] (as [math](X,d:X\times X\rightarrow\mathbb{R})[/math] is too long and Mathematicians are lazy) or simply [math]X[/math] if it is obvious which metric we are talking about on [math]X[/math]


Examples of metrics

Euclidian Metric

The Euclidian metric on [math]\mathbb{R}^n[/math] is defined as follows: For [math]x=(x_1,...,x_n)\in\mathbb{R}^n[/math] and [math]y=(y_1,...,y_n)\in\mathbb{R}^n[/math] we define the Euclidian metric by:

[math]d_{\text{Euclidian}}(x,y)=\sqrt{\prod^n_{i=1}(x_i^2+y_i^2)}[/math]

Proof it is a metric


TODO: Proof this is a metric



Discreet Metric

This is a useless metric, but is a metric and induces the Discreet Topology on X, where the topology is the powerset of [math]X[/math], [math]\mathcal{P}(X)[/math].

[math]d_{\text{discreet}}(x,y)=\left\{\begin{array}{lr} 1 & x=y\\ 0 & \text{otherwise} \end{array}\right.[/math]