User:Alec/Modules/Measure theory
From Maths
Lecture notes summary
Week 1
- Goal: μ:P(R)→\[0,∞]:=R≥0∪{+∞}
- Additivity: A∩B=∅⟹μ(A∪B)=μ(A)+μ(B)
- Task: Find μ such that μ(A) is defined for all A∈P(R) and μ is σ-additive
- Problem: if demanding in addition that:
- μ(x+A)=μ(A) ∀A∈P(R) ∀x∈R it is not possible.
- Claim: ∄μ:P(R)→[0,∞] such that:
- μ(x+A)=μ(A) ∀A∈P(R), ∀x∈R
- μ(⋃∞i=1Ai)=∑∞i=1μ(Ai) if the A_i are pairwise disjoint
- \mu((a,b)) = b-a for every interval (a,b)
- Notice if B\subseteq A then \mu(A)=\mu(B)+\mu(A-B)+\sum_{i=3}^\infty \mu(\emptyset)\ge\mu(B)
- Vitali's set
- \exists V\subseteq [0,1] such that all V+r for r\in\mathbb{Q} are mutually disjoint and
- \bigcup_{r\in\mathbb{Q} }(V+r)=\mathbb{R}
- Then for \mu satisfying 1-3 above:
- Consider a sequence ({ r_i })_{ i = 1 }^{ \infty } of all rational numbers in (-1,1), then:
- (0,1)\subseteq\bigcup_{i=1}^\infty (r_i+V)\subseteq (-1,2)
- (*): \bigcup_{r\in\mathbb{Q} }(V+r)=\mathbb{R} and \bigcup_{r\in\mathbb{Q}-(-1,1)}(V+r)\cap(0,1)=\emptyset
- v_i\in(-1,1) and V\subset[0,1]
- (0,1)\subseteq\bigcup_{i=1}^\infty (r_i+V)\subseteq (-1,2)
- Consider a sequence ({ r_i })_{ i = 1 }^{ \infty } of all rational numbers in (-1,1), then:
- Hence:
- 3\ge\mu(\bigcup_{i=1}^\infty(R_i+v))=\sum_{i=1}^\infty \mu(r_i+V)=\sum^\infty_{i=1}\mu(V) \implies \mu(V)=0
- 1\le\sum \mu(r_i+V)=\sum^\infty_{i=1}\mu(V)=\sum 0=0
- \exists V\subseteq [0,1] such that all V+r for r\in\mathbb{Q} are mutually disjoint and
- Proof of existence of Vitali's set:
This is so hard to read