User:Alec/Modules/Measure theory

From Maths
Jump to: navigation, search

Lecture notes summary

Week 1

  • Goal: μ:P(R)\[0,]:=R0{+}
    • Additivity: AB=μ(AB)=μ(A)+μ(B)
  • Task: Find μ such that μ(A) is defined for all AP(R) and μ is σ-additive
  • Problem: if demanding in addition that:
    • μ(x+A)=μ(A) AP(R) xR it is not possible.
    • Claim: μ:P(R)[0,] such that:
      1. μ(x+A)=μ(A) AP(R), xR
      2. μ(i=1Ai)=i=1μ(Ai) if the A_i are pairwise disjoint
      3. \mu((a,b)) = b-a for every interval (a,b)
    • Notice if B\subseteq A then \mu(A)=\mu(B)+\mu(A-B)+\sum_{i=3}^\infty \mu(\emptyset)\ge\mu(B)
  • Vitali's set
    • \exists V\subseteq [0,1] such that all V+r for r\in\mathbb{Q} are mutually disjoint and
      • \bigcup_{r\in\mathbb{Q} }(V+r)=\mathbb{R}
    • Then for \mu satisfying 1-3 above:
      • Consider a sequence ({ r_i })_{ i = 1 }^{ \infty } of all rational numbers in (-1,1), then:
        • (0,1)\subseteq\bigcup_{i=1}^\infty (r_i+V)\subseteq (-1,2)
          • (*): \bigcup_{r\in\mathbb{Q} }(V+r)=\mathbb{R} and \bigcup_{r\in\mathbb{Q}-(-1,1)}(V+r)\cap(0,1)=\emptyset
          • v_i\in(-1,1) and V\subset[0,1]
    • Hence:
      1. 3\ge\mu(\bigcup_{i=1}^\infty(R_i+v))=\sum_{i=1}^\infty \mu(r_i+V)=\sum^\infty_{i=1}\mu(V) \implies \mu(V)=0
      2. 1\le\sum \mu(r_i+V)=\sum^\infty_{i=1}\mu(V)=\sum 0=0
  • Proof of existence of Vitali's set:

This is so hard to read