Difference between revisions of "Metric space"
m (→Euclidian Metric) |
m |
||
Line 1: | Line 1: | ||
==Definition of a metric space== | ==Definition of a metric space== | ||
− | + | A metric space is a set <math>X</math> coupled with a "distance function"<ref name="Topology">Introduction to Topology - Bert Mendelson</ref>: | |
− | A metric space is a set <math>X</math> coupled with a "distance function" <math>d:X\times X\rightarrow\mathbb{R}</math> | + | * <math>d:X\times X\rightarrow\mathbb{R}</math> or sometimes |
− | + | * <math>d:X\times X\rightarrow\mathbb{R}_+</math><ref name="Analysis">Analysis - Part 1: Elements - Krzysztof Maurin</ref> | |
+ | With the properties that for <math>x,y,z\in X</math>: | ||
# <math>d(x,y)\ge 0</math> | # <math>d(x,y)\ge 0</math> | ||
# <math>d(x,y)=0\iff x=y</math> | # <math>d(x,y)=0\iff x=y</math> | ||
− | # <math>d(x,y)=d(y,x)</math> | + | # <math>d(x,y)=d(y,x)</math> - Symmetry |
# <math>d(x,z)\le d(x,y)+d(y,z)</math> - the [[Triangle inequality]] | # <math>d(x,z)\le d(x,y)+d(y,z)</math> - the [[Triangle inequality]] | ||
We will denote a metric space as <math>(X,d)</math> (as <math>(X,d:X\times X\rightarrow\mathbb{R})</math> is too long and [[Mathematicians are lazy]]) or simply <math>X</math> if it is obvious which metric we are talking about on <math>X</math> | We will denote a metric space as <math>(X,d)</math> (as <math>(X,d:X\times X\rightarrow\mathbb{R})</math> is too long and [[Mathematicians are lazy]]) or simply <math>X</math> if it is obvious which metric we are talking about on <math>X</math> | ||
− | |||
==Examples of metrics== | ==Examples of metrics== | ||
Line 18: | Line 18: | ||
<math>d_{\text{Euclidian}}(x,y)=\sqrt{\sum^n_{i=1}((x_i-y_i)^2)}</math> | <math>d_{\text{Euclidian}}(x,y)=\sqrt{\sum^n_{i=1}((x_i-y_i)^2)}</math> | ||
− | + | {{Begin Theorem}} | |
− | + | Proof that this is a metric | |
− | {{Todo | + | {{Begin Proof}} |
+ | {{Todo}} | ||
+ | {{End Proof}}{{End Theorem}} | ||
===Discreet Metric=== | ===Discreet Metric=== | ||
Line 26: | Line 28: | ||
<math>d_{\text{discreet}}(x,y)=\left\{\begin{array}{lr} | <math>d_{\text{discreet}}(x,y)=\left\{\begin{array}{lr} | ||
− | + | 0 & x=y\\ | |
− | + | 1 & \text{otherwise} | |
\end{array}\right.</math> | \end{array}\right.</math> | ||
+ | {{Begin Theorem}} | ||
+ | Proof that this is a metric | ||
+ | {{Begin Proof}} | ||
+ | {{Todo|Really easy though}} | ||
+ | {{End Proof}}{{End Theorem}} | ||
+ | |||
+ | ==See also== | ||
+ | * [[Topological space]] | ||
+ | |||
+ | ==References== | ||
+ | <references/> | ||
{{Definition|Topology|Metric Space}} | {{Definition|Topology|Metric Space}} |
Revision as of 00:30, 22 June 2015
Contents
Definition of a metric space
A metric space is a set [math]X[/math] coupled with a "distance function"[1]:
- [math]d:X\times X\rightarrow\mathbb{R}[/math] or sometimes
- [math]d:X\times X\rightarrow\mathbb{R}_+[/math][2]
With the properties that for [math]x,y,z\in X[/math]:
- [math]d(x,y)\ge 0[/math]
- [math]d(x,y)=0\iff x=y[/math]
- [math]d(x,y)=d(y,x)[/math] - Symmetry
- [math]d(x,z)\le d(x,y)+d(y,z)[/math] - the Triangle inequality
We will denote a metric space as [math](X,d)[/math] (as [math](X,d:X\times X\rightarrow\mathbb{R})[/math] is too long and Mathematicians are lazy) or simply [math]X[/math] if it is obvious which metric we are talking about on [math]X[/math]
Examples of metrics
Euclidian Metric
The Euclidian metric on [math]\mathbb{R}^n[/math] is defined as follows: For [math]x=(x_1,...,x_n)\in\mathbb{R}^n[/math] and [math]y=(y_1,...,y_n)\in\mathbb{R}^n[/math] we define the Euclidian metric by:
[math]d_{\text{Euclidian}}(x,y)=\sqrt{\sum^n_{i=1}((x_i-y_i)^2)}[/math]
Proof that this is a metric
TODO:
Discreet Metric
This is a useless metric, but is a metric and induces the Discreet Topology on X, where the topology is the powerset of [math]X[/math], [math]\mathcal{P}(X)[/math].
[math]d_{\text{discreet}}(x,y)=\left\{\begin{array}{lr} 0 & x=y\\ 1 & \text{otherwise} \end{array}\right.[/math]
Proof that this is a metric
TODO: Really easy though