Difference between revisions of "Circle"

From Maths
Jump to: navigation, search
m
m
 
(One intermediate revision by the same user not shown)
Line 16: Line 16:
  
 
Using [[Passing to the quotient]] we see that {{M|\exists\bar{f} }} that makes the diagram below commute '''if and only if''' {{M|1=t_1\sim t_2\implies f(t_1)=f(t_2)}}
 
Using [[Passing to the quotient]] we see that {{M|\exists\bar{f} }} that makes the diagram below commute '''if and only if''' {{M|1=t_1\sim t_2\implies f(t_1)=f(t_2)}}
 +
 +
<math>
 +
\begin{xy}
 +
\xymatrix{
 +
{\mathbb{R}} \ar[d] \ar[dr] &\\
 +
{\frac{\mathbb{R}}{\mathbb{Z}}} \ar[r]_{\bar{f}} & {\mathbb{S}^1}
 +
}
 +
\end{xy}
 +
</math>
  
  

Latest revision as of 16:57, 11 May 2015

\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }

Definition

A circle is usually defined by \mathcal{S}^1=\Big\{(x,y)\in\mathbb{R}^2|d\Big((0,0),(x,y)\Big)=1 \Big\}

Topological perspective

The map f:\mathbb{R}\rightarrow\mathbb{S}^1 given by f:t\mapsto e^{2\pi jt} is significant. As it makes \mathbb{R} a covering space of \mathbb{S}^1

The circle as a quotient space

[Expand]

Theorem: The circle \mathbb{S}^1 is homeomorphic to \frac{\mathbb{R} }{\mathbb{Z} }


See also