Difference between revisions of "Circle"

From Maths
Jump to: navigation, search
(Created page with " ==Definition== A circle is usually defined by {{M|1=\mathcal{C}=\{ {{!}} \} }} ==See also== * Sphere {{Definition|Manifolds|Topology}}")
 
m
Line 1: Line 1:
 
+
{{Extra Maths}}
 
==Definition==
 
==Definition==
A circle is usually defined by {{M|1=\mathcal{C}=\{ {{!}} \} }}
+
A circle is usually defined by {{M|1=\mathcal{S}^1=\Big\{(x,y)\in\mathbb{R}^2{{!}}d\Big((0,0),(x,y)\Big)=1 \Big\} }}
 +
 
 +
==Topological perspective==
 +
The map {{M|f:\mathbb{R}\rightarrow\mathbb{S}^1}} given by {{M|f:t\mapsto e^{2\pi jt} }} is significant. As it makes {{M|\mathbb{R} }} a [[Covering space|covering space]] of {{M|\mathbb{S}^1}}
 +
 
 +
===The circle as a quotient space===
 +
{{Begin Theorem}}
 +
Theorem: The circle {{M|\mathbb{S}^1}} is [[Homeomorphism|homeomorphic]] to {{M|\frac{\mathbb{R} }{\mathbb{Z} } }}
 +
{{Begin Proof}}
 +
Using the map above, we see that this just wraps the real line around the circle over and over again, specifically {{M|1=f(t_1)=f(t_2)\iff t_1-t_2\in\mathbb{S} }}, this suggests an [[Equivalence relation]].
 +
 
 +
Using a bit of abstract algebra it is not hard to see that the [[Equivalence class|equivalence classes]] are exactly the [[Coset|cosets]] of {{M|\mathbb{Z} }} in {{M|\mathbb{R} }}. So it is no problem to write {{M|1=\tfrac{\mathbb{R} }{\sim}=\tfrac{\mathbb{R} }{\mathbb{Z} } }}
 +
 
 +
 
 +
Using [[Passing to the quotient]] we see that {{M|\exists\bar{f} }} that makes the diagram below commute '''if and only if''' {{M|1=t_1\sim t_2\implies f(t_1)=f(t_2)}}
 +
 
 +
 
 +
[math]
 +
\begin{CD}
 +
R {{CD Hoz Eq}} R \\
 +
{{CD Down Arrow|q}} {{CD Down Arrow||f}} \\
 +
\frac{\mathbb{R}}{\mathbb{Z}} {{CD Right Arrow||\bar{f} }} \mathbb{S}^1
 +
\end{CD}
 +
[/math] {{Triangle Wanted}}
 +
 
 +
(Where {{M|\bar{f}:\frac{\mathbb{R} }{\mathbb{Z} }\rightarrow{\mathbb{S}^1} }} is given by {{M|\bar{f}:[t]\rightarrow f(t)}})
 +
 
 +
 
 +
If {{M|\bar{f} }} is a homeomorphism the result is shown.
 +
 
 +
* {{M|\frac{\mathbb{R} }{\mathbb{Z} } }} is compact as it is the [[Image of a compact set is compact|image of a compact set]], namely {{M|[0,1]}} under {{M|q}}
 +
* {{M|\mathbb{S}^1}} is [[Hausdorff]] since it is a [[Metric space|metric space]] and every metric space is Hausdorff.
 +
* {{M|f}} is [[Surjection|surjective]], so as {{M|1=f=\bar{f}\circ q}} and {{M|q}} is surjective, {{M|\bar{f} }} must be too.
 +
** Otherwise there'd be things {{M|f}} maps to that {{M|\bar{f}\circ q}} may not - contradicting the diagrams commute
 +
* {{M|\bar{f} }} is [[Injection|injective]]
 +
** To be injective {{M|1=\bar{f}([t_1])=\bar{f}([t_2])\implies[t_1]=[t_2]}}
 +
*** Showing that {{M|\bar{f} }} is well defined
 +
***: Given {{M|a,b\in [t]}} we know {{M|a\sim b}} as {{M|[t]}} is an [[Equivalence class]]
 +
***: So this means {{M|1=f(a)=f(b)}} because that's how we defined 'equivalent'
 +
***: Thus {{M|1=\forall a\in [t][\bar{f}([t])=f(a)]}} - so we can defined {{M|\bar{f} }} unambiguously!
 +
*** Using this we see {{M|1=\bar{f}([t_1])=f(t_1)}} (choosing {{M|t_1}} as the representative of {{M|[t_1]}}) and
 +
***: {{M|1=\bar{f}([t_2])=f(t_2)}}, so we have {{M|1=f(t_1)=f(t_2)}} so {{M|t_1\sim t_2}}
 +
**** Now we know {{M|t_1\in[t_1]\cap[t_2] }} and {{M|t_2\in[t_1]cap[t_2] }}
 +
***: As [[Coset#Cosets are either disjoint or equal|cosets are either disjoint or equal]], and they're not disjoint! (we know {{M|t_1}} is in the intersection even if {{M|1=t_1=t_2}})
 +
***: so are equal - thus {{M|\bar{f} }} is injective.
 +
* Thus {{M|\bar{f} }} is a [[Bijection|bijection]]
 +
 
 +
Using the [[Compact-to-Hausdorff theorem]] we conclude {{M|\bar{f} }} is a '''homeomorphism'''
 +
{{End Proof}}
 +
{{End Theorem}}
  
 
==See also==
 
==See also==

Revision as of 18:53, 16 April 2015

\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }

Definition

A circle is usually defined by \mathcal{S}^1=\Big\{(x,y)\in\mathbb{R}^2|d\Big((0,0),(x,y)\Big)=1 \Big\}

Topological perspective

The map f:\mathbb{R}\rightarrow\mathbb{S}^1 given by f:t\mapsto e^{2\pi jt} is significant. As it makes \mathbb{R} a covering space of \mathbb{S}^1

The circle as a quotient space

[Expand]

Theorem: The circle \mathbb{S}^1 is homeomorphic to \frac{\mathbb{R} }{\mathbb{Z} }


See also