Difference between revisions of "Topological space"

From Maths
Jump to: navigation, search
m
m
Line 1: Line 1:
  
 
==Definition==
 
==Definition==
A topological space is a set <math>X</math> coupled with a topology on <math>X</math> denoted <math>\mathcal{J}\subset\mathcal{P}(X)</math>, which is a collection of subsets of <math>X</math> with the following properties:
+
A topological space is a set <math>X</math> coupled with a topology on <math>X</math> denoted <math>\mathcal{J}\subset\mathcal{P}(X)</math>, which is a collection of subsets of <math>X</math> with the following properties<ref name="Top">Topology - James R. Munkres - Second Edition</ref><ref name="ITTM">Introduction to Topological Manifolds - Second Edition - John M. Lee</ref><ref name="ITT">Introduction to Topology - Third Edition - Bert Mendelson</ref>:
  
 
# Both <math>\emptyset,X\in\mathcal{J}</math>
 
# Both <math>\emptyset,X\in\mathcal{J}</math>
# For the collection <math>\{U_\alpha\}_{\alpha\in I}\subset\mathcal{J}</math> where <math>I</math> is any indexing set, <math>\cup_{\alpha\in I}U_\alpha\in\mathcal{J}</math> - that is it is closed under union (infinite, finite, whatever)
+
# For the collection <math>\{U_\alpha\}_{\alpha\in I}\subseteq\mathcal{J}</math> where <math>I</math> is any indexing set, <math>\cup_{\alpha\in I}U_\alpha\in\mathcal{J}</math> - that is it is closed under union (infinite, finite, whatever)
# For the collection <math>\{U_i\}^n_{i=1}\subset\mathcal{J}</math> (any finite collection of members of the topology) that <math>\cap^n_{i=1}U_i\in\mathcal{J}</math>
+
# For the collection <math>\{U_i\}^n_{i=1}\subseteq\mathcal{J}</math> (any finite collection of members of the topology) that <math>\cap^n_{i=1}U_i\in\mathcal{J}</math>
  
 
We write the topological space as <math>(X,\mathcal{J})</math> or just <math>X</math> if the topology on <math>X</math> is obvious.
 
We write the topological space as <math>(X,\mathcal{J})</math> or just <math>X</math> if the topology on <math>X</math> is obvious.
 +
* We call the elements of {{M|\mathcal{J} }} "[[Open set|open sets]]"
  
The elements of <math>\mathcal{J}</math> are defined to be "[[Open set|open]]" sets.
+
==Examples==
 
+
* Every [[Metric space|metric space]] induces a topology, see [[Topology induced by a metric|the topology induced by a metric space]]
 +
* Given any set {{M|X}} we can always define the following two topologies on it:
 +
*# [[Discrete topology]] - the topology {{M|1=\mathcal{J}=\mathcal{P}(X)}} - where {{M|\mathcal{P}(X)}} denotes the [[Power set|power set]] of {{M|X}}
 +
*# [[Trivial topology]] - the topology {{M|1=\mathcal{J}=\{\emptyset, X\} }}
 
==See Also==
 
==See Also==
 
* [[Topology]]
 
* [[Topology]]
 +
* [[Topological property theorems]]
  
 
==References==
 
==References==
EVERY BOOK WITH TOPOLOGY IN THE NAME AND MANY WITHOUT
+
<references/>
  
 
{{Definition|Topology}}
 
{{Definition|Topology}}

Revision as of 16:24, 14 August 2015

Definition

A topological space is a set [math]X[/math] coupled with a topology on [math]X[/math] denoted [math]\mathcal{J}\subset\mathcal{P}(X)[/math], which is a collection of subsets of [math]X[/math] with the following properties[1][2][3]:

  1. Both [math]\emptyset,X\in\mathcal{J}[/math]
  2. For the collection [math]\{U_\alpha\}_{\alpha\in I}\subseteq\mathcal{J}[/math] where [math]I[/math] is any indexing set, [math]\cup_{\alpha\in I}U_\alpha\in\mathcal{J}[/math] - that is it is closed under union (infinite, finite, whatever)
  3. For the collection [math]\{U_i\}^n_{i=1}\subseteq\mathcal{J}[/math] (any finite collection of members of the topology) that [math]\cap^n_{i=1}U_i\in\mathcal{J}[/math]

We write the topological space as [math](X,\mathcal{J})[/math] or just [math]X[/math] if the topology on [math]X[/math] is obvious.

  • We call the elements of [ilmath]\mathcal{J} [/ilmath] "open sets"

Examples

See Also

References

  1. Topology - James R. Munkres - Second Edition
  2. Introduction to Topological Manifolds - Second Edition - John M. Lee
  3. Introduction to Topology - Third Edition - Bert Mendelson