Difference between revisions of "Open ball"

From Maths
Jump to: navigation, search
m
m
Line 1: Line 1:
{{Definition|Topology|Metric Space}}
 
  
 +
==Definition==
 
For a [[Metric space|metric space]] <math>(X,d)</math> an "open ball" of radius <math>r</math> centred at <math>a</math> is the set
 
For a [[Metric space|metric space]] <math>(X,d)</math> an "open ball" of radius <math>r</math> centred at <math>a</math> is the set
 
<math>\{x\in X|d(a,x)\lt r\}</math>, it can be denoted several ways. I frequently encounter
 
<math>\{x\in X|d(a,x)\lt r\}</math>, it can be denoted several ways. I frequently encounter
Line 7: Line 7:
  
 
==Proof that an open ball is open==
 
==Proof that an open ball is open==
{{Todo|The proof is really easy, just show a smaller ball fits inside, thus the open ball is a neighborhood to all of its points}}
+
Take the open ball <math>B_\epsilon(p)</math>.
 +
 
 +
Let <math>x\in B_\epsilon(p)</math> be arbitrary
 +
 
 +
Choose <math>r=\epsilon-d(x,p)</math> - then as <math>x\in B_\epsilon(p)\iff d(x,p)<\epsilon</math> we see <math>r>0</math>
 +
 
 +
We now need to show that <math>B_r(x)\subset B_\epsilon(p)</math> using the [[Implies and subset relation]] we see:
 +
 
 +
<math>B_r(x)\subset B_\epsilon(p)</math><math>\iff y\in B_r(x)\implies y\in B_\epsilon(p)</math>
 +
 
 +
So let <math>y\in B_r(x)</math> be arbitrary, then:
 +
 
 +
<math>y\in B_r(x)\iff d(y,x)< r=\epsilon-d(x,p)</math> so <math>d(y,x)<\epsilon-d(x,p)</math>
 +
 
 +
<math>d(y,x)<\epsilon-d(x,p)\iff d(y,x)+d(x,p)<\epsilon</math>
 +
 
 +
But by the [[Triangle inequality]] part of [[Metric space|the metric]] <math>d(y,p)\le d(y,x)+d(x,p)<\epsilon</math>
 +
 
 +
So <math>d(y,p)<\epsilon\iff y\in B_\epsilon(p)</math>
 +
 
 +
 
 +
We have shown that <math>y\in B_r(x)\implies y\in B_\epsilon(p)\iff B_r(x)\subset B_\epsilon(p)</math>, since <math>x\in B_\epsilon(p)</math> was arbitrary, we have shown that <math>B_\epsilon(p)</math> is a neighbourhood to all of its points, thus is open.
  
  
 
==See Also==
 
==See Also==
 
* [[Open set]]
 
* [[Open set]]
 +
 +
{{Definition|Topology|Metric Space}}

Revision as of 00:19, 9 March 2015

Definition

For a metric space [math](X,d)[/math] an "open ball" of radius [math]r[/math] centred at [math]a[/math] is the set [math]\{x\in X|d(a,x)\lt r\}[/math], it can be denoted several ways. I frequently encounter

[math]B_r(a)=B(a;r)=\{x\in X|d(a,x)\lt r\}[/math] and use [math]B_r(a)[/math]

Proof that an open ball is open

Take the open ball [math]B_\epsilon(p)[/math].

Let [math]x\in B_\epsilon(p)[/math] be arbitrary

Choose [math]r=\epsilon-d(x,p)[/math] - then as [math]x\in B_\epsilon(p)\iff d(x,p)<\epsilon[/math] we see [math]r>0[/math]

We now need to show that [math]B_r(x)\subset B_\epsilon(p)[/math] using the Implies and subset relation we see:

[math]B_r(x)\subset B_\epsilon(p)[/math][math]\iff y\in B_r(x)\implies y\in B_\epsilon(p)[/math]

So let [math]y\in B_r(x)[/math] be arbitrary, then:

[math]y\in B_r(x)\iff d(y,x)< r=\epsilon-d(x,p)[/math] so [math]d(y,x)<\epsilon-d(x,p)[/math]

[math]d(y,x)<\epsilon-d(x,p)\iff d(y,x)+d(x,p)<\epsilon[/math]

But by the Triangle inequality part of the metric [math]d(y,p)\le d(y,x)+d(x,p)<\epsilon[/math]

So [math]d(y,p)<\epsilon\iff y\in B_\epsilon(p)[/math]


We have shown that [math]y\in B_r(x)\implies y\in B_\epsilon(p)\iff B_r(x)\subset B_\epsilon(p)[/math], since [math]x\in B_\epsilon(p)[/math] was arbitrary, we have shown that [math]B_\epsilon(p)[/math] is a neighbourhood to all of its points, thus is open.


See Also