Notes:Ell^p(C) is complete for p between one and positive infinity inclusive
From Maths
Statement
∀p∈[1,+∞]⊆¯R the space ℓp(C) is complete.
Proof
Leammas
Lemma 1:
- Let (xn)n∈N⊆ℓp(C) be given
- Suppose (xn)n∈N is a Cauchy sequence
- Write them out as follows:
- x1=(xm1)m∈N=x11, x21, …, xk1, …x2=(xm2)m∈N=x12, x22, …, xk2, …⋮
- Now consider the kth column of this table, this gives us the sequence: (xkm)m∈N
- We claim that (xkm)m∈N is a Cauchy sequence itself
- Write them out as follows:
- Suppose (xn)n∈N is a Cauchy sequence
Lemma 2:
Let (X,d) be a metric space, then A∈P(X) is bounded in X if and only if:
- ∀x∈X∃C∈R>0∀a∈A[d(a,x)≤C]
Proof body
- Let p∈[1,+∞]⊆¯R be given.
- Let (xn)n∈N⊆ℓp(C) be a Cauchy sequence in ℓp(C)
- By lemma 1, we obtain, for each k∈N the sequence: (xkm)m∈N and we know this is Cauchy
- As C is a complete metric space - TODO: link to this- we see that (xkm)m converges
- For k∈N define: tk:=lim which we have just established exists
- Define \mathbf{t}:\eq(t_1,\ldots,t_k,\ldots) - a sequence
- We claim that:
- \mathbf{t}\in\ell^p(\mathbb{C})
- \lim_{n\rightarrow\infty}(\mathbf{x}_n)\eq\mathbf{t}
- Proof:
- That \mathbf{t}\in\ell^p(\mathbb{C})
- Let \epsilon>0 be given
- Since (\mathbf{x}_n)_n is Cauchy there exists N'\in\mathbb{N} such that \forall n,m\in\mathbb{N}[n>m\ge N\implies d(\mathbf{x}_m,\mathbf{x}_n)<\epsilon] Caveat:Or equivalent definition of Cauchy sequence - I initially used (m\ge N\wedge n\ge N)\implies d(\ldots
- Warning:"Also (\mathbf{x}_n)_n is bounded - that's all I've written.
- Thus, by lemma 2, \exists R\in\mathbb{R}_{>0}\forall n\in\mathbb{N}[d(x_n,(0,\ldots,0,\ldots))<R]
- We now show if p\eq +\infty that \mathbf{t}\in\ell^\infty(\mathbb{C})
- In this case we see that d(\mathbf{x}_n,\mathbf{0})<R\iff\left[\mathop{\text{Sup} }_{i\in\mathbb{N} }\left(\vert x^i_n\vert\right)<R\right]
- Hence by definition of \mathbf{t} 's elements:
- \forall i\in\mathbb{N}\left[\vert t_i\vert\eq \lim_{n\rightarrow\infty}\left(\vert x_n^i\vert\right)\le R\right]
- "Thus \mathbf{t}\in\ell^\infty(\mathbb{C})" - all I've written.
- \forall i\in\mathbb{N}\left[\vert t_i\vert\eq \lim_{n\rightarrow\infty}\left(\vert x_n^i\vert\right)\le R\right]
- Hence by definition of \mathbf{t} 's elements:
- In this case we see that d(\mathbf{x}_n,\mathbf{0})<R\iff\left[\mathop{\text{Sup} }_{i\in\mathbb{N} }\left(\vert x^i_n\vert\right)<R\right]
- We now show if p\eq +\infty that \mathbf{t}\in\ell^\infty(\mathbb{C})
- Thus, by lemma 2, \exists R\in\mathbb{R}_{>0}\forall n\in\mathbb{N}[d(x_n,(0,\ldots,0,\ldots))<R]
- Let \epsilon>0 be given
- We now wish to show limit bit.
- Notice that d(\mathbf{x}_n,\mathbf{x}_m)<\epsilon\iff \big\vert x_n^i-x_m^i\vert<\epsilon
- Fix m\ge N, then let n\rightarrow\infty to obtain: \forall i\in\mathbb{N}[\vert t_i-x_m^i\vert\le\epsilon]
- Since m\ge N was arbitrary we see: \forall m\in\mathbb{N}\left[m\ge N\implies \mathop{\text{Sup} }_{i\in\mathbb{N} }(\vert t_i-x_m^i\vert)\le\epsilon\right]
- Since \epsilon>0 was arbitrary it follows that (\mathbf{x}_n) converges in \ell^\infty(\mathbb{C}) to \mathbf{t} \in\ell^\infty(\mathbb{C})
- Since m\ge N was arbitrary we see: \forall m\in\mathbb{N}\left[m\ge N\implies \mathop{\text{Sup} }_{i\in\mathbb{N} }(\vert t_i-x_m^i\vert)\le\epsilon\right]
- Fix m\ge N, then let n\rightarrow\infty to obtain: \forall i\in\mathbb{N}[\vert t_i-x_m^i\vert\le\epsilon]
- Notice that d(\mathbf{x}_n,\mathbf{x}_m)<\epsilon\iff \big\vert x_n^i-x_m^i\vert<\epsilon
- That \mathbf{t}\in\ell^p(\mathbb{C})
- We claim that:
- Define \mathbf{t}:\eq(t_1,\ldots,t_k,\ldots) - a sequence
- For k∈N define: tk:=lim which we have just established exists
- Let (xn)n∈N⊆ℓp(C) be a Cauchy sequence in ℓp(C)