Difference between revisions of "Normal subgroup"

From Maths
Jump to: navigation, search
(Created page with "==Definition== Let {{M|(G,\times)}} be a group and {{M|H}} a subgroup of {{M|G}}, we say {{M|H}} is a '''normal subgroup'''<ref name="LangUA">Undergradu...")
 
m (Completed proof of second claim)
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
Let {{M|(G,\times)}} be a [[Group|group]] and {{M|H}} a [[Subgroup|subgroup]] of {{M|G}}, we say {{M|H}} is a '''normal subgroup'''<ref name="LangUA">Undergraduate Algebra - Serge Lang</ref> of {{M|G}} if:
 
Let {{M|(G,\times)}} be a [[Group|group]] and {{M|H}} a [[Subgroup|subgroup]] of {{M|G}}, we say {{M|H}} is a '''normal subgroup'''<ref name="LangUA">Undergraduate Algebra - Serge Lang</ref> of {{M|G}} if:
 
* <math>\forall x\in G[xH=Hx]</math> where the {{M|xH}} and {{M|Hx}} are left and right [[Coset|cosets]]
 
* <math>\forall x\in G[xH=Hx]</math> where the {{M|xH}} and {{M|Hx}} are left and right [[Coset|cosets]]
 +
** This is the sameas saying: {{M|1=\forall x\in G[xHx^{-1}=H]}}
 +
According to Serge Lang<ref name="LangUA"/> this is equivalent (that is say '''''if and only if''''' or {{M|\iff}})
 +
* {{M|H}} is the kerel of some [[Homomorphism|homomorphism]] of {{M|G}} into some other group
 +
*: This can be summed up as the following two statements:
 +
*:# The [[Kernel|kernel]] of a [[Homomorphism|homomorphism]] is a normal subgroup
 +
*:# Every normal subgroup is the kernel of some homomorphism
 +
==Proof of claims==
 +
{{Begin Theorem}}
 +
Claim 1: <math>\forall x\in G[xH=Hx]\iff\forall x\in G[xHx^{-1}=H]</math>
 +
{{Begin Proof}}
 +
'''Proof of: <math>\forall x\in G[xH=Hx]\implies\forall x\in G[xHx^{-1}=H]</math>'''
 +
: Suppose that for whatever {{M|g\in G}} we have that {{M|1=gH=Hg}} - we wish to show that for any {{M|1=x\in G[xHx^{-1}=H]}}
 +
:: Let {{M|x\in G}} be given.
 +
:: Recall that <math>X=Y\iff[X\subseteq Y\wedge X\supseteq Y]</math> so we need to show:
 +
::# <math>xHx^{-1}\subseteq H</math>
 +
::#* By the [[Implies and subset relation|implies-subset relation]] this is the same as <math>y\in xHx^{-1}\implies y\in H</math>
 +
::# <math>xHx^{-1}\supseteq H</math>
 +
::#* By the [[Implies and subset relation|implies-subset relation]] this is the same as <math>y\in H\implies y\in xHx^{-1}</math>
 +
:: Let us show 1:
 +
::: Suppose <math>y\in xHx^{-1}</math> we wish to show <math>\implies y\in H</math> (that is <math>xHx^{-1}\subseteq H</math>)
 +
:::: <math>y\in xHx^{-1}\implies \exists h_1\in H:y=xh_1x^{-1}</math>
 +
:::: <math>\implies yx=xh_1</math> - note that {{M|xh_1\in xH}}
 +
::::: By hypothesis, <math>\forall g\in G[gH=Hg]</math>
 +
:::: So, as {{M|1=yx=xh_1\in xH}} we see {{M|1=yx\in Hx}}
 +
:::: This means <math>\exists h_2\in H</math> such that <math>yx=h_2x</math>
 +
::::: Using [[Group#Cancellation laws|the cancellation laws for groups]] we see that
 +
:::: <math>y=h_2</math> as {{M|h_2\in H}} we must have {{M|y\in H}}
 +
::: We have now shown that <math>[y\in xHx^{-1}\implies y\in H]\iff[xHx^{-1}\subseteq H]</math>
 +
:: Now to show 2:
 +
::: Suppose that {{M|y\in H}} we wish to show that <math>\implies y\in xHx^{-1}</math> (that is <math>H\subseteq xHx^{-1}</math>)
 +
:::: Note that {{M|yx\in Hx}} by definition of {{M|Hx}}
 +
::::: By hypothesis {{M|1=Hx=xH}} so
 +
:::: we see that {{M|yx\in xH}}
 +
:::: this means {{M|1=\exists h_1\in H[yx=xh_1]}}
 +
:::: and this means {{M|1=y=xh_1x^{-1} }}
 +
:::: such a {{M|h_1}} existing is the very definition of {{M|xh_1x^{-1}\in xHx^{-1} }}
 +
:::: thus {{M|y\in xHx^{-1} }}
 +
::: We have now shown that <math>[y\in H\implies y\in xHx^{-1}]\implies[H\subseteq xHx^{-1}]</math>
 +
: Combining this we hve shown that {{M|1=\forall x\in G[xH=Hx]\implies\forall x\in G[xHx^{-1}=H]}}
  
{{Todo|Flesh out page}}
+
 
 +
 
 +
Next:
 +
 
 +
'''Proof of: <math>\forall x\in G[xHx^{-1}=H]\implies\forall x\in G[xH=Hx]</math>'''
 +
{{Todo|Simple proof}}
 +
{{End Proof}}{{End Theorem}}
 +
{{Begin Theorem}}
 +
Claim 2: The kernel of a homomorphism is a normal subgroup
 +
{{Begin Proof}}
 +
We wish to show that given a homomorphism {{M|f:G\rightarrow X}} (where {{M|X}} is some group) that the kernel of {{M|f}}, {{M|H}} is normal. Which is to say that:
 +
* <math>\forall x\in G[xHx^{-1}=H]</math> (which is <math>\forall x\in G[x\text{Ker}(f)x^{-1}=\text{Ker}(f)]</math> )
 +
 
 +
'''Proof that <math>\forall x\in G[xHx^{-1}\subseteq H]</math>'''
 +
: Let {{M|x\in G}} be given
 +
:: Let {{M|y\in xHx^{-1} }} be given
 +
::: Then <math>\exists h_1\in H:y=xh_1x^{-1}</math>
 +
::: <math>f(y)=f(xh_1x^{-1})=f(x)f(h_1)f(x^{-1})</math>
 +
:::: But {{M|H}} is the kernel of {{M|f}} so {{M|1=f(h_1)=e}} where {{M|e}} is the identity of {{M|X}}
 +
::: <math>f(y)=f(x)ef(x^{-1})</math>
 +
:::: It is a property of homomorphisms that {{M|1=f(x^{-1})=(f(x))^{-1} }}
 +
::: <math>f(y)=f(x)f(x^{-1})=f(x)f(x)^{-1}=e</math>
 +
:: Thus {{M|1=y\in\text{Ker}(f)=H}}
 +
: So we see that {{M|1=xHx^{-1}\subseteq H}}
 +
 
 +
 
 +
'''Proof that <math>\forall x\in G[H\subseteq xHx^{-1}]</math>'''
 +
: As before, let {{M|x\in G}} be given.
 +
:: From above we know that <math>\forall x\in G[xHx^{-1}\subseteq H]</math>, using this we see that <math>x^{-1}Hx\subseteq H</math>
 +
:: Let {{M|y\in H}} be given (we will show that then {{M|y\in xHx^{-1} }})
 +
::: We know that {{M|x^{-1}Hx\subseteq H}}, as {{M|y\in H}} we know that {{M|x^{-1}yx\in H}}
 +
::: This means <math>\exists h\in H[x^{-1}yx=h]</math>
 +
::: <math>\implies yx=xh</math>
 +
::: <math>\implies y=xhx^{-1}</math>
 +
::: Thus <math>y\in xHx^{-1}</math>
 +
: We have shown that <math>[y\in H\implies y\in xHx^{-1}]\iff[H\subseteq xHx^{-1}]</math>
 +
 
 +
 
 +
We have shown that <math>\forall x\in G[xHx^{-1}\subseteq H\wedge H\subseteq xHx^{-1}]</math>, which is exactly:
 +
* Given a group homomorphism {{M|f:G\rightarrow X}} where {{M|1=\text{Ker}(f)=H}}, we have shown that {{M|1=\forall x\in G[H=xHx^{-1}]}} which is the first definition of a normal subgroup
 +
{{End Proof}}{{End Theorem}}
 +
{{Begin Theorem}}
 +
Claim 3: Every normal subgroup is the kernel of some homomorphism
 +
{{Begin Proof}}
 +
{{End Proof}}{{End Theorem}}
 
==References==
 
==References==
 
<references/>
 
<references/>
  
 
{{Definition|Abstract Algebra}}
 
{{Definition|Abstract Algebra}}

Latest revision as of 18:07, 17 May 2015

Definition

Let [ilmath](G,\times)[/ilmath] be a group and [ilmath]H[/ilmath] a subgroup of [ilmath]G[/ilmath], we say [ilmath]H[/ilmath] is a normal subgroup[1] of [ilmath]G[/ilmath] if:

  • [math]\forall x\in G[xH=Hx][/math] where the [ilmath]xH[/ilmath] and [ilmath]Hx[/ilmath] are left and right cosets
    • This is the sameas saying: [ilmath]\forall x\in G[xHx^{-1}=H][/ilmath]

According to Serge Lang[1] this is equivalent (that is say if and only if or [ilmath]\iff[/ilmath])

  • [ilmath]H[/ilmath] is the kerel of some homomorphism of [ilmath]G[/ilmath] into some other group
    This can be summed up as the following two statements:
    1. The kernel of a homomorphism is a normal subgroup
    2. Every normal subgroup is the kernel of some homomorphism

Proof of claims

Claim 1: [math]\forall x\in G[xH=Hx]\iff\forall x\in G[xHx^{-1}=H][/math]


Proof of: [math]\forall x\in G[xH=Hx]\implies\forall x\in G[xHx^{-1}=H][/math]

Suppose that for whatever [ilmath]g\in G[/ilmath] we have that [ilmath]gH=Hg[/ilmath] - we wish to show that for any [ilmath]x\in G[xHx^{-1}=H][/ilmath]
Let [ilmath]x\in G[/ilmath] be given.
Recall that [math]X=Y\iff[X\subseteq Y\wedge X\supseteq Y][/math] so we need to show:
  1. [math]xHx^{-1}\subseteq H[/math]
  2. [math]xHx^{-1}\supseteq H[/math]
Let us show 1:
Suppose [math]y\in xHx^{-1}[/math] we wish to show [math]\implies y\in H[/math] (that is [math]xHx^{-1}\subseteq H[/math])
[math]y\in xHx^{-1}\implies \exists h_1\in H:y=xh_1x^{-1}[/math]
[math]\implies yx=xh_1[/math] - note that [ilmath]xh_1\in xH[/ilmath]
By hypothesis, [math]\forall g\in G[gH=Hg][/math]
So, as [ilmath]yx=xh_1\in xH[/ilmath] we see [ilmath]yx\in Hx[/ilmath]
This means [math]\exists h_2\in H[/math] such that [math]yx=h_2x[/math]
Using the cancellation laws for groups we see that
[math]y=h_2[/math] as [ilmath]h_2\in H[/ilmath] we must have [ilmath]y\in H[/ilmath]
We have now shown that [math][y\in xHx^{-1}\implies y\in H]\iff[xHx^{-1}\subseteq H][/math]
Now to show 2:
Suppose that [ilmath]y\in H[/ilmath] we wish to show that [math]\implies y\in xHx^{-1}[/math] (that is [math]H\subseteq xHx^{-1}[/math])
Note that [ilmath]yx\in Hx[/ilmath] by definition of [ilmath]Hx[/ilmath]
By hypothesis [ilmath]Hx=xH[/ilmath] so
we see that [ilmath]yx\in xH[/ilmath]
this means [ilmath]\exists h_1\in H[yx=xh_1][/ilmath]
and this means [ilmath]y=xh_1x^{-1}[/ilmath]
such a [ilmath]h_1[/ilmath] existing is the very definition of [ilmath]xh_1x^{-1}\in xHx^{-1} [/ilmath]
thus [ilmath]y\in xHx^{-1} [/ilmath]
We have now shown that [math][y\in H\implies y\in xHx^{-1}]\implies[H\subseteq xHx^{-1}][/math]
Combining this we hve shown that [ilmath]\forall x\in G[xH=Hx]\implies\forall x\in G[xHx^{-1}=H][/ilmath]


Next:

Proof of: [math]\forall x\in G[xHx^{-1}=H]\implies\forall x\in G[xH=Hx][/math]


TODO: Simple proof


Claim 2: The kernel of a homomorphism is a normal subgroup


We wish to show that given a homomorphism [ilmath]f:G\rightarrow X[/ilmath] (where [ilmath]X[/ilmath] is some group) that the kernel of [ilmath]f[/ilmath], [ilmath]H[/ilmath] is normal. Which is to say that:

  • [math]\forall x\in G[xHx^{-1}=H][/math] (which is [math]\forall x\in G[x\text{Ker}(f)x^{-1}=\text{Ker}(f)][/math] )

Proof that [math]\forall x\in G[xHx^{-1}\subseteq H][/math]

Let [ilmath]x\in G[/ilmath] be given
Let [ilmath]y\in xHx^{-1} [/ilmath] be given
Then [math]\exists h_1\in H:y=xh_1x^{-1}[/math]
[math]f(y)=f(xh_1x^{-1})=f(x)f(h_1)f(x^{-1})[/math]
But [ilmath]H[/ilmath] is the kernel of [ilmath]f[/ilmath] so [ilmath]f(h_1)=e[/ilmath] where [ilmath]e[/ilmath] is the identity of [ilmath]X[/ilmath]
[math]f(y)=f(x)ef(x^{-1})[/math]
It is a property of homomorphisms that [ilmath]f(x^{-1})=(f(x))^{-1}[/ilmath]
[math]f(y)=f(x)f(x^{-1})=f(x)f(x)^{-1}=e[/math]
Thus [ilmath]y\in\text{Ker}(f)=H[/ilmath]
So we see that [ilmath]xHx^{-1}\subseteq H[/ilmath]


Proof that [math]\forall x\in G[H\subseteq xHx^{-1}][/math]

As before, let [ilmath]x\in G[/ilmath] be given.
From above we know that [math]\forall x\in G[xHx^{-1}\subseteq H][/math], using this we see that [math]x^{-1}Hx\subseteq H[/math]
Let [ilmath]y\in H[/ilmath] be given (we will show that then [ilmath]y\in xHx^{-1} [/ilmath])
We know that [ilmath]x^{-1}Hx\subseteq H[/ilmath], as [ilmath]y\in H[/ilmath] we know that [ilmath]x^{-1}yx\in H[/ilmath]
This means [math]\exists h\in H[x^{-1}yx=h][/math]
[math]\implies yx=xh[/math]
[math]\implies y=xhx^{-1}[/math]
Thus [math]y\in xHx^{-1}[/math]
We have shown that [math][y\in H\implies y\in xHx^{-1}]\iff[H\subseteq xHx^{-1}][/math]


We have shown that [math]\forall x\in G[xHx^{-1}\subseteq H\wedge H\subseteq xHx^{-1}][/math], which is exactly:

  • Given a group homomorphism [ilmath]f:G\rightarrow X[/ilmath] where [ilmath]\text{Ker}(f)=H[/ilmath], we have shown that [ilmath]\forall x\in G[H=xHx^{-1}][/ilmath] which is the first definition of a normal subgroup

Claim 3: Every normal subgroup is the kernel of some homomorphism


References

  1. 1.0 1.1 Undergraduate Algebra - Serge Lang