Difference between revisions of "Metric space"

From Maths
Jump to: navigation, search
m (Silly error)
m
Line 7: Line 7:
 
# <math>d(x,y)=0\iff x=y</math>
 
# <math>d(x,y)=0\iff x=y</math>
 
# <math>d(x,y)=d(y,x)</math>
 
# <math>d(x,y)=d(y,x)</math>
# <math>d(x,z)\le d(x,y)+d(y,z)</math> - the [[Triangle Inequality]]
+
# <math>d(x,z)\le d(x,y)+d(y,z)</math> - the [[Triangle inequality]]
  
 
We will denote a metric space as <math>(X,d)</math> (as <math>(X,d:X\times X\rightarrow\mathbb{R})</math> is too long and [[Mathematicians are lazy]]) or simply <math>X</math> if it is obvious which metric we are talking about on <math>X</math>
 
We will denote a metric space as <math>(X,d)</math> (as <math>(X,d:X\times X\rightarrow\mathbb{R})</math> is too long and [[Mathematicians are lazy]]) or simply <math>X</math> if it is obvious which metric we are talking about on <math>X</math>

Revision as of 16:12, 7 March 2015

Definition of a metric space

A metric space is a set [math]X[/math] coupled with a "distance function" [math]d:X\times X\rightarrow\mathbb{R}[/math] with the properties (for [math]x,y,z\in X[/math])

  1. [math]d(x,y)\ge 0[/math]
  2. [math]d(x,y)=0\iff x=y[/math]
  3. [math]d(x,y)=d(y,x)[/math]
  4. [math]d(x,z)\le d(x,y)+d(y,z)[/math] - the Triangle inequality

We will denote a metric space as [math](X,d)[/math] (as [math](X,d:X\times X\rightarrow\mathbb{R})[/math] is too long and Mathematicians are lazy) or simply [math]X[/math] if it is obvious which metric we are talking about on [math]X[/math]


Examples of metrics

Euclidian Metric

The Euclidian metric on [math]\mathbb{R}^n[/math] is defined as follows: For [math]x=(x_1,...,x_n)\in\mathbb{R}^n[/math] and [math]y=(y_1,...,y_n)\in\mathbb{R}^n[/math] we define the Euclidian metric by:

[math]d_{\text{Euclidian}}(x,y)=\sqrt{\prod^n_{i=1}((x_i-y_i)^2)}[/math]

Proof it is a metric


TODO: Proof this is a metric



Discreet Metric

This is a useless metric, but is a metric and induces the Discreet Topology on X, where the topology is the powerset of [math]X[/math], [math]\mathcal{P}(X)[/math].

[math]d_{\text{discreet}}(x,y)=\left\{\begin{array}{lr} 1 & x=y\\ 0 & \text{otherwise} \end{array}\right.[/math]