# Fundamental group homomorphism induced by a continuous map

This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Important page, although the proof is done

## Definition

Let [ilmath](X,\mathcal{ J })[/ilmath] and [ilmath](Y,\mathcal{ K })[/ilmath] be topological spaces[Note 1], let [ilmath]p\in X[/ilmath] be some fixed point (to act as the base point for the fundamental group, [ilmath]\pi_1(X,p)[/ilmath]) and let [ilmath]\varphi:X\rightarrow Y[/ilmath] be a continuous map. Then:

• [ilmath]\varphi[/ilmath] induces a group homomorphism on the fundamental groups, [ilmath]\pi_1(X,p)[/ilmath] to [ilmath]\pi_1(Y,\varphi(p))[/ilmath], which we denote:
• [ilmath]\varphi_*:\pi_1(X,p)\rightarrow\pi_1(Y,\varphi(p))[/ilmath] defined as:
• [ilmath]\varphi_*:[f]\mapsto [\varphi\circ f][/ilmath][Note 2]

For more details on the formalities of the definition see the proof: the proof, which names everything involved during the statement.

## Immediate results

### The induced homomorphism of a composition is the same as the composition of induced homomorphisms

Let [ilmath](X,\mathcal{ J })[/ilmath], [ilmath](Y,\mathcal{ K })[/ilmath] and [ilmath](Z,\mathcal{ H })[/ilmath] be topological spaces, let [ilmath]p\in X[/ilmath] be any fixed point (to act as a base point for the fundamental group [ilmath]\pi_1(X,p)[/ilmath]) and let [ilmath]\varphi:X\rightarrow Y[/ilmath] and [ilmath]\psi:Y\rightarrow Z[/ilmath] be continuous maps. Then:

• [ilmath](\psi\circ\varphi)_*\eq(\psi_*\circ\varphi_*)[/ilmath]
• where [ilmath]\varphi_*[/ilmath] denotes the fundamental group homomorphism, [ilmath]\varphi_*:\pi_1(X,p)\rightarrow\pi_1(Y,\varphi(p))[/ilmath], induced by [ilmath]\varphi[/ilmath] - and "" for the others

Note that both of these maps have the form [ilmath]\big(:\pi_1(X,p)\rightarrow\pi_1(Z,\psi(\varphi(p))\big)[/ilmath]

### The induced homomorphism of the identity map is the identity map of the fundamental group

Let [ilmath](X,\mathcal{ J })[/ilmath] be a topological space, let [ilmath]\text{Id}_X:X\rightarrow X[/ilmath] be the identity map, given by [ilmath]\text{Id}_X:x\mapsto x[/ilmath] and let [ilmath]p\in X[/ilmath] be given (this will be the basepoint of [ilmath]\pi_1(X,p)[/ilmath]) then:

• the induced map on the fundamental group [ilmath]\pi_1(X,p)[/ilmath] is equal to the identity map on [ilmath]\pi_1(X,p)[/ilmath]
• That is to say [ilmath](\text{Id}_X)_*\eq\text{Id}_{\pi_1(X,p)}:\pi_1(X,p)\rightarrow\pi_1(X,p)[/ilmath] where [ilmath]\text{Id}_{\pi_1(X,p)} [/ilmath] is given by [ilmath]\text{Id}_{\pi_1(X,p)}:[f]\mapsto [f][/ilmath]

### Homeomorphic topological spaces have isomorphic fundamental groups

Let [ilmath](X,\mathcal{ J })[/ilmath] and [ilmath](Y,\mathcal{ K })[/ilmath] be homeomorphic topological spaces, let [ilmath]p\in X[/ilmath] be given (this will be the base point of the fundamental group [ilmath]\pi_1(X,p)[/ilmath]) and let [ilmath]\varphi:X\rightarrow Y[/ilmath] be that homeomorphism. Then: :

That is to say:

• [ilmath]\big(X\cong_\varphi Y)\implies(\pi_1(X,p)\cong_{\varphi_*}\pi_1(Y,\varphi(p))\big)[/ilmath]