# If the intersection of two open balls is non-empty then for every point in the intersection there is an open ball containing it in the intersection

From Maths

**Stub grade: A***

This page is a stub

This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:

Elementary metric space theorem. Needed for proof of the metric topology (precursor to

**If the intersection of two open balls is non-empty then for every point in the intersection there is an open ball containing it in the intersection**which is a precursor to the metric topology- Related claims:
- Demote to grade B once this is linked to by a few pages.

## Contents

## Statement

Let [ilmath](X,d)[/ilmath] be a metric space. Let [ilmath]x_1,x_2\in X[/ilmath] be given and let [ilmath]r_1,r_2\in\mathbb{R}_{>0} [/ilmath] be given also (so that [ilmath]B_{r_1}(x_1)[/ilmath] and [ilmath]B_{r_2}(x_2)[/ilmath] are open balls of [ilmath](X,d)[/ilmath]). Let [ilmath]B_i:\eq B_{r_i}(x_i)[/ilmath] (for brevity^{[Note 1]}). Then:

- [ilmath][B_1\cap B_2\neq\emptyset]\implies\big[\forall x_3\in B_1\cap B_2\exists r_3\in\mathbb{R}_{>0}[x\in B_3\wedge B_3\subseteq B_1\cap B_2]\big][/ilmath]
^{[Note 2]}^{[Note 3]}- In full this is: [ilmath]\underbrace{\forall x_1\in X\forall r_1\in\mathbb{R}_{>0}\forall x_2\in X\forall r_2\in\mathbb{R}_{>0} }_{\text{any two open balls} } [/ilmath][ilmath]\overbrace{\big[\underbrace{(\ball{1}\cap\ball{2}\neq\emptyset)}_{\text{they overlap} }\implies\underbrace{\forall x_3\in \ball{1}\cap\ball{2} }_{\text{forall }x_3\text{ in that overlap} }\underbrace{\exists r_3\in\mathbb{R}_{>0} }_{\text{there is a radius for the ball at }x_3}\overbrace{[x_3\in \ball{3}\wedge\underbrace{\ball{3}\subseteq\ball{1}\cap\ball{2} }_{\text{this third ball is contained in the overlap} }]}^{\text{such that} }\big]}^{\text{such that} } [/ilmath]

In words:

- If [ilmath]B_1\cap B_2[/ilmath] is non-empty (the open balls overlap) then for any point in their intersection there exists an open ball

## Proof

- Let [ilmath]x_1,x_2\in X[/ilmath] and [ilmath]r_1,r_2\in\mathbb{R}_{>0} [/ilmath] be given. (
*i.e.*let [ilmath]\ball{1} [/ilmath] and [ilmath]\ball{2} [/ilmath] be given)- Suppose they are disjoint
- By the nature of logical implication, the result is true in this case regardless of the truth or falsity of the RHS of the implication symbol

- Suppose they are
*not*disjoint.- Let [ilmath]x_3\in\ball{1}\cap\ball{2} [/ilmath] be given
- We must now pick [ilmath]r_3[/ilmath] such that [ilmath]\ball{3}\subseteq\ball{1}\cap\ball{2} [/ilmath]
- By
*An open ball contains another open ball centred at each of its points*- We see that:
- [ilmath]\exists t_1\in\mathbb{R}_{>0}[B_{t_1}(x_3)\subseteq\ball{1}][/ilmath], and
- [ilmath]\exists t_2\in\mathbb{R}_{>0}[B_{t_2}(x_3)\subseteq\ball{2}][/ilmath]

- Now we have [ilmath]t_1,t_2\in\mathbb{R}_{>0} [/ilmath] such that the above hold.

- We see that:
- Suppose [ilmath]t_1\eq t_2[/ilmath], then obviously [ilmath]B_{t_1}(x_3)\eq B_{t_2}(x_3)[/ilmath]
- We may write [ilmath]B_{t_1}(x_3)\subseteq B_{t_2}(x_3)[/ilmath] and [ilmath]B_{t_2}(x_3)\subseteq B_{t_1}(x_3)[/ilmath] and not be wrong in either case

- Suppose [ilmath]t_1\neq t_2[/ilmath], then:
- By
*Given two open balls sharing the same centre but with differing radius then the one defined to have a strictly smaller radius is contained in the other*we see that if: - [ilmath]B_{\text{min}(t_1,t_2)}(x_3)\subseteq B_{t_2}(x_3)[/ilmath] and [ilmath]B_{\text{min}(t_1,t_2)}(x_3)\subseteq B_{t_1}(x_3)[/ilmath]
- One of these cases will be equality the other will be a [ilmath]\subseteq[/ilmath] from the linked statement.

- By
- Choose [ilmath]r_3:\eq\text{min}(t_1,t_2)[/ilmath]
- Now we have:
- [ilmath]\ball{3}\subseteq B_{t_1}(x_3)\subseteq\ball{1} [/ilmath] giving [ilmath]\ball{3}\subseteq\ball{1} [/ilmath], and
- [ilmath]\ball{3}\subseteq B_{t_2}(x_3)\subseteq\ball{2} [/ilmath] giving [ilmath]\ball{3}\subseteq\ball{2} [/ilmath]

- By the implies-subset relation we see that [ilmath]\forall y\in\ball{3}[y\in\ball{1}][/ilmath] and [ilmath]\forall y\in\ball{3}[y\in\ball{2}][/ilmath]
- Combining these we see: [ilmath]\forall y\in\ball{3}[y\in\ball{1}\wedge y\in\ball{2}][/ilmath]
- This is easily seen to be the same as [ilmath]\forall y\in\ball{3}[y\in \ball{1}\cap\ball{2}][/ilmath] (by the definition of intersection)

- By the implies-subset relation again we see that:
- [ilmath]\forall y\in\ball{3}[y\in \ball{1}\cap\ball{2}][/ilmath]
*if and only if*[ilmath]\ball{3}\subseteq\ball{1}\cap\ball{2} [/ilmath] - as required

- [ilmath]\forall y\in\ball{3}[y\in \ball{1}\cap\ball{2}][/ilmath]
- We still have to show that [ilmath]x_3\in\ball{3} [/ilmath].
- As [ilmath]y\in\ball{3} [/ilmath]
*if and only if*[ilmath]d(y,x_3)<r_3[/ilmath] and as [ilmath]d(x_3,x_3)\eq 0[/ilmath] we see:- [ilmath]d(x_3,x_3)<r_3[/ilmath] thus [ilmath]x_3\in\ball{3} [/ilmath] as required

- As [ilmath]y\in\ball{3} [/ilmath]

- Now we have:
- We have shown the result holds for our choice of [ilmath]r_3[/ilmath]

- Since [ilmath]x_3\in\ball{1}\cap\ball{2} [/ilmath] was arbitrary we have shown it for all.

- Let [ilmath]x_3\in\ball{1}\cap\ball{2} [/ilmath] be given
- We have shown the implication holds in either case of its LHS

- Suppose they are disjoint
- Since the open balls [ilmath]\ball{1} [/ilmath] and [ilmath]\ball{2} [/ilmath] were arbitrary we have shown it for all

This completes the proof.

## Notes

- ↑ The length of the following makes it hard to read:
- [ilmath][\ball{1}\cap\ball{2}\neq\emptyset]\implies\big[\forall x_3\in\ball{1}\cap\ball{2}\exists r_3\in\mathbb{R}_{>0}[x_3\in\ball{3}\wedge\ball{3}\subseteq\ball{1}\cap\ball{2}]\big][/ilmath]

- ↑ TODO: The following is currently speculation and should be confirmed in the future
- Books:Introduction to Topology - Bert Mendelson introduces a "neighbourhood to [ilmath]a\in X[/ilmath]" as any set containing an open ball centred at [ilmath]a[/ilmath]

That is why we try to find [ilmath]B_3[/ilmath] - centred at [ilmath]x_3[/ilmath] rather than any other open ball in the intersection that contains [ilmath]x_3[/ilmath] say.

- This should all make sense once the metric topology page is completed and we have a definition of open set to show equivalence with

- ↑ It would be an acceptable and unambiguous abuse of notation to write:
- [ilmath]x\in B_3\subseteq B_1\cap B_2[/ilmath] rather than [ilmath]x\in B_3\wedge B_3\subseteq B_1\cap B_2[/ilmath]

## References