Equivalent conditions to a set being bounded/Statement

From Maths
Jump to: navigation, search


Let [ilmath](X,d)[/ilmath] be a metric space and let [ilmath]A\in\mathcal{P}(X)[/ilmath] be an arbitrary subset of [ilmath]X[/ilmath]. Then the following are all logical equivalent to each other[Note 1]:

  1. [ilmath]\exists C<\infty\ \forall a,b\in A[d(a,b)<C][/ilmath] - [ilmath]A[/ilmath] is bounded (the definition)
  2. [ilmath]\forall x\in X\exists C<\infty\forall a\in A[d(a,x)<C][/ilmath][1]


  1. Just in case the reader isn't sure what this means, if [ilmath]A[/ilmath] and [ilmath]B[/ilmath] are logically equivalent then:
    • [ilmath]A\iff B[/ilmath]. In words "[ilmath]A[/ilmath] if and only if [ilmath]B[/ilmath]"


  1. Functional Analysis - Volume 1: A gentle introduction - Dzung Minh Ha