Dynkin system

From Maths
Revision as of 12:58, 27 July 2015 by Alec (Talk | contribs) (Created page with "==Definition== {{Extra Maths}}Given a set {{M|X}} and a family of subsets of {{M|X}}, which we shall denote {{M|\mathcal{D}\subseteq\mathcal{P}(X)}} is a ''Dynkin system''<ref...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Definition

[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math]Given a set [ilmath]X[/ilmath] and a family of subsets of [ilmath]X[/ilmath], which we shall denote [ilmath]\mathcal{D}\subseteq\mathcal{P}(X)[/ilmath] is a Dynkin system[1] if:

  • [ilmath]X\in\mathcal{D} [/ilmath]
  • For any [ilmath]D\in\mathcal{D} [/ilmath] we have [ilmath]D^c\in\mathcal{D} [/ilmath]
  • For any [ilmath](D_n)_{n=1}^\infty\subseteq\mathcal{D}[/ilmath] is a sequence of pairwise disjoint sets we have [ilmath]\udot_{n=1}^\infty D_n\in\mathcal{D}[/ilmath]

Immediate results

  • [ilmath]\emptyset\in\mathcal{D} [/ilmath]


Proof:

As [ilmath]\mathcal{D} [/ilmath] is closed under complements and [ilmath]X\in\mathcal{D} [/ilmath] by definition, [ilmath]X^c\in\mathcal{D} [/ilmath]
[ilmath]X^c=\emptyset[/ilmath] so [ilmath]\emptyset\in\mathcal{D} [/ilmath]

This completes the proof.

See also

References

  1. Rene L. Schilling - Measures, Integrals and Martingales