A map, [ilmath]f:(A,\mathcal{A})\rightarrow(F,\mathcal{F})[/ilmath], is [ilmath]\mathcal{A}/\mathcal{F} [/ilmath] measurable if and only if for some generator [ilmath]\mathcal{F}_0[/ilmath] of [ilmath]\mathcal{F} [/ilmath] we have [ilmath]\forall S\in\mathcal{F}_0[f^{-1}(S)\in\mathcal{A}][/ilmath]

From Maths
Revision as of 21:13, 17 March 2016 by Alec (Talk | contribs)

Jump to: navigation, search


(Unknown grade)
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.

Statement

A map from a [ilmath]\sigma[/ilmath]-algebra [ilmath](A,\mathcal{A})[/ilmath] to another [ilmath]\sigma[/ilmath]-algebra [ilmath](F,\mathcal{F})[/ilmath], [ilmath]f:A\rightarrow F[/ilmath], is [ilmath]\mathcal{A}/\mathcal{F} [/ilmath] measurable if and only if for some generator, [ilmath]\mathcal{G} [/ilmath], of [ilmath]\mathcal{F} [/ilmath][Note 1] we have[1][2]:

  • [ilmath]\forall S\in\mathcal{G}[f^{-1}(S)\in\mathcal{A}][/ilmath]

Which we may alternatively write (for brevity, see: abuses of the implies-subset relation) as:

  • [ilmath]f^{-1}(\mathcal{G})\subseteq\mathcal{A} [/ilmath]

Proof


TODO: See ref[2] page 6, also lemma 7.2 in[1]


Notes

  1. Thus [ilmath]\mathcal{F}=\sigma(\mathcal{G})[/ilmath]

References

  1. 1.0 1.1 Measures, Integrals and Martingales - René L. Schilling
  2. 2.0 2.1 Probability and Stochastics - Erhan Cinlar