# A compact and convex subset of Euclidean [ilmath]n[/ilmath]-space with non-empty interior is a closed [ilmath]n[/ilmath]-cell and its interior is an open [ilmath]n[/ilmath]-cell

Jump to: navigation, search
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Worth doing

## Statement

Let [ilmath]X\in\mathcal{P}(\mathbb{R}^n)[/ilmath] be an arbitrary subset of [ilmath]\mathbb{R}^n[/ilmath][Note 1], then, if [ilmath]X[/ilmath] is compact and convex, and has a non-empty interior then:

Furthermore, given any point [ilmath]p\in\text{Int}(X)[/ilmath], there exists a homeomorphism, [ilmath]f:\overline{\mathbb{B}^n}\rightarrow X[/ilmath] (where [ilmath]\overline{\mathbb{B}^n} [/ilmath] is the closed unit ball[Note 2] in [ilmath]\mathbb{R}^n[/ilmath]) such that:

1. [ilmath]f(0)\eq p[/ilmath]
2. [ilmath]f\left(\mathbb{B}^n\right)\eq\text{Int}(X)[/ilmath] (where [ilmath]\mathbb{B}^n[/ilmath] is the open unit ball[Note 3] in [ilmath]\mathbb{R}^n[/ilmath]), and
3. [ilmath]f(\mathbb{S}^{n-1})\eq\partial X[/ilmath] (where [ilmath]\mathbb{S}^{n-1}\subset\mathbb{R}^n[/ilmath] is the [ilmath](n-1)[/ilmath]-sphere, and [ilmath]\partial X[/ilmath] denotes the boundary of [ilmath]X[/ilmath])

Caveat:When we speak of interior and boundary here, we mean considered as a subset of [ilmath]\mathbb{R}^n[/ilmath], not as [ilmath]X[/ilmath] itself against the subspace topology on [ilmath]X[/ilmath]

## Proof

Grade: A
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
Good to do!

TODO: todo