Law of total probability
From Maths
Statement
Let (S,Ω,P) be a probability space, let (Ui)ni=1⊆Ω be a finite collection of P-measurable sets such that:
- S⊆⋃ni=1Ui[Note 1], and,
- the (Ui)ni=1 are pairwise disjoint, ∀i,j∈{1,…,n}⊆N[(i≠j)⟹(Ui∩Uj=∅)][Note 2]
then we claim:
- ∀A∈Ω[P[A]=n∑i=1P[A∩Bi]]
- There are a few alternate forms:
- ∀A∈Ω[P[A]=∑ni=1P[A|Bi]P[Bi]], or even
- ∀A∈Ω[P[A]=∑ni=1P[Bi|A]P[A]]
- There are a few alternate forms:
Notes
- Jump up ↑ As:
- \forall A\in\Omega[A\subseteq S], specifically each U_i\subseteq S, and,
- as a union of subsets is a subset of the union (in this case: \bigcup_{i\eq 1}^n U_i \subseteq \bigcup_{A\in\{S\} } A specifically)
- \bigcup_{i\eq 1}^n U_i\subseteq S
- S\subseteq\bigcup_{i\eq 1}^n U_i
- S\eq\bigcup_{i\eq 1}^n U_i
- \big[S\eq\bigcup_{i\eq 1}^n U_i\big]\iff\big[S\subseteq\bigcup_{i\eq 1}^n U_i\big]
- Jump up ↑ The property of pairwise disjointedness is often stated using the contrapositive, that is:
- \big[(i\neq j)\implies(U_i\cap U_j\eq\emptyset)\big]\iff\big[(U_i\cap U_j\neq\emptyset)\implies(i\eq j)\big]
- \forall i,j\in\{1,\ldots,n\}\subseteq\mathbb{N}\big[(U_i\cap U_j\neq\emptyset)\implies(i\eq j)\big] as opposed to
- \forall i,j\in\{1,\ldots,n\}\subseteq\mathbb{N}\big[(i\neq j)\implies(U_i\cap U_j\eq\emptyset)\big] which we gave above