Law of total probability

From Maths
Jump to: navigation, search

Statement

Let (S,Ω,P) be a probability space, let (Ui)ni=1Ω be a finite collection of P-measurable sets such that:

  • Sni=1Ui[Note 1], and,
  • the (Ui)ni=1 are pairwise disjoint, i,j{1,,n}N[(ij)(UiUj=)][Note 2]

then we claim:

  • AΩ[P[A]=ni=1P[ABi]]
    • There are a few alternate forms:
      1. AΩ[P[A]=ni=1P[A|Bi]P[Bi]], or even
      2. AΩ[P[A]=ni=1P[Bi|A]P[A]]

Notes

  1. Jump up As:
    • \forall A\in\Omega[A\subseteq S], specifically each U_i\subseteq S, and,
    • as a union of subsets is a subset of the union (in this case: \bigcup_{i\eq 1}^n U_i \subseteq \bigcup_{A\in\{S\} } A specifically)
    we automatically have:
    • \bigcup_{i\eq 1}^n U_i\subseteq S
    Combine this with the requirement that
    • S\subseteq\bigcup_{i\eq 1}^n U_i
    We see:
    • S\eq\bigcup_{i\eq 1}^n U_i
    Thus:
    • \big[S\eq\bigcup_{i\eq 1}^n U_i\big]\iff\big[S\subseteq\bigcup_{i\eq 1}^n U_i\big]
    So it doesn't matter if we use \eq or \subseteq
  2. Jump up The property of pairwise disjointedness is often stated using the contrapositive, that is:
    • \big[(i\neq j)\implies(U_i\cap U_j\eq\emptyset)\big]\iff\big[(U_i\cap U_j\neq\emptyset)\implies(i\eq j)\big]
    giving:
    • \forall i,j\in\{1,\ldots,n\}\subseteq\mathbb{N}\big[(U_i\cap U_j\neq\emptyset)\implies(i\eq j)\big] as opposed to
    • \forall i,j\in\{1,\ldots,n\}\subseteq\mathbb{N}\big[(i\neq j)\implies(U_i\cap U_j\eq\emptyset)\big] which we gave above