Types of set algebras
From Maths
Relationship between types
This diagram shows the relations between types of system:
[math]\begin{xy}\xymatrix{ & \text{Dynkin system} \ar[dr]^(0.6){\cap\text{-closed}} & \\ & {\sigma\text{-ring}} \ar[r]^{\Omega\in\mathcal{A}} & {\sigma\text{-algebra}} \\ \text{ring} \ar[ur]^{\sigma\text{-}\cup} \ar[r]^{\Omega\in\mathcal{A}} & \text{algebra} \ar[ur]_{\sigma\text{-}\cup} & \\ \text{semiring} \ar[u]_{\cup\text{-closed}} & & }\end{xy}[/math] Diagram showing the relationships
Notes
| Closed under | |||||||
|---|---|---|---|---|---|---|---|
| Type | [ilmath]\sigma\in\mathcal{A} [/ilmath] | [ilmath]\bigcap[/ilmath] | [ilmath]\sigma[/ilmath]-[ilmath]\bigcap[/ilmath] | [ilmath]\bigcup[/ilmath] | [ilmath]\sigma[/ilmath]-[ilmath]\bigcup[/ilmath] | [ilmath]-[/ilmath] | [ilmath]C[/ilmath] |
| Semi-Ring | |||||||
| Ring | |||||||
| [ilmath]\sigma[/ilmath]-Ring | |||||||
| Algebra | |||||||
| Dynkin system | |||||||
| [ilmath]\sigma[/ilmath]-Algebra | # | # | X | X | # | ||