User:Harold/Cone of rp2
\newcommand{\rp}[1]{\mathbb{R}P^{#1}} \newcommand{\R}{\mathbb{R} } Assume that C(\rp2) is a topological 3-manifold with boundary. Let x be an interior point (i.e., not a boundary point) of C(\rp^2). We compute H_1(C(\rp2) - \{ x \} .
Let be a small open neighbourhood of x that is homeomorphic to an open \epsilon-ball around the origin in \R^3. The subsets x \subset U \subset C(\rp2) satisfy the conditions of Hatcher, Theorem 2.20 (the Excision Theorem). Hence we obtain H_n(C(\rp2) - \{ x \}, U - \{ x \}) \cong H_n(C(\rp2), U) for all n \in \mathbb{Z} .
We now compute H_1(C(\rp2), U) . We have H_0(C(\rp2)) \cong 0 \cong H_0(U) . We have the relevant portion of the long exact sequence for pairs, \to \underbrace{H_1(U)}_{\cong 0} \to \underbrace{H_1(C(\rp2))}_{\cong 0} \to H_1(C(\rp2), U) \to \underbrace{H_0(U)}_{\cong \mathbb{Z} } \to \underbrace{H_0(C(\rp2))}_{\cong \mathbb{Z} } \to H_0(C(\rp2), U) \to 0.
From the exactness of this sequence, we conclude that H_1(C(\rp2), U) is either isomorphic to \mathbb{Z} or is trivial.
Looking at the long exact sequence for the pair (C(\rp2) - \{ x \} , U - \{ x \}) , we see
\to \underbrace{H_1(U - \{ x \})}_{\cong 0} \to H_1(C(\rp2) - \{ x \} ) \to \underbrace{H_1(C(\rp2) - \{x\}, U - \{x\})}_{\cong H_1(C(\rp2), U)} \to \underbrace{H_0(U - \{x\})}_{\cong \mathbb{Z} } \to \underbrace{H_0(C(\rp2) - \{x\})}_{\cong \mathbb{Z} } \to H_0(C(\rp2) - \{x\}, U - \{x\}) \to 0.
By exactness, we obtain that the map H_1(C(\rp2) - \{ x \}) \to H_1(C(\rp2) - \{x\}, U - \{x\}) is injective. As we previously concluded, H_1(C(\rp2), U) is either isomorphic to \mathbb{Z} or is trivial, hence H_1(C(\rp2) - \{ x \}) is either \mathbb{Z} or trivial.
Now let p be the cone point of C(\rp2). Then C(\rp2) - \{ p \} is homotopy equivalent to \rp2 , hence H_1(C(\rp2) - \{p\} is isomorphic to \mathbb{Z} / 2 \mathbb{Z} . Hence p cannot be an interior point, nor a boundary point of C(\rp2) , and as such, C(\rp2) cannot be a topological manifold with boundary.