Lebesgue measure
From Maths
Definition
The set function λn:(Rn,B(Rn))→R≥[1] that assigns every half-open rectangle [[a,b))=[a_1,b_1)\times\cdots\times[a_n,b_n)\in\mathcal{J} as follows:
\lambda^n\Big([[a,b))\Big)=\Pi^n_{i=1}(b_i-a_i)
Where \mathcal{J}= the set of all half-open-half-closed 'rectangles' in \mathbb{R}^n
Note that it can be shown \mathcal{B}(\mathbb{R}^n)=\sigma(\mathcal{J}) where \sigma(\mathcal{J}) is the [[Sigma-algebra|\sigma-algebra generated by \mathcal{J}
References
- Jump up ↑ P27 - Measures, Integrals and Martingales - Rene L. Schilling