Exercises:Measure Theory - 2016 - 1/Section B/Problem 1
From Maths
Contents
Section B
Problem B1
Part i)
Suppose that [ilmath]\mathcal{A}_n[/ilmath] are algebras of sets satisfying [ilmath]\mathcal{A}_n\subset \mathcal{A}_{n+1} [/ilmath]. Show that [ilmath]\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[/ilmath] is an algebra.
- Caution:Is [ilmath]\subset[/ilmath] or [ilmath]\subseteq[/ilmath] desired?
Solution
- Closed under complementation: [ilmath]\forall A\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[A^\complement\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n][/ilmath]
- Let [ilmath]A\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[/ilmath] be given.
- By definition of union: [ilmath]\big[A\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n\big]\iff\big[\exists i\in\mathbb{N}[A\in\mathcal{A}_i]\big][/ilmath]
- As [ilmath]\mathcal{A}_i[/ilmath] is an algebra of sets itself:
- [ilmath]A^\complement\in\mathcal{A}_i[/ilmath]
- Thus [ilmath]A^\complement\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[/ilmath]
- As [ilmath]\mathcal{A}_i[/ilmath] is an algebra of sets itself:
- By definition of union: [ilmath]\big[A\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n\big]\iff\big[\exists i\in\mathbb{N}[A\in\mathcal{A}_i]\big][/ilmath]
- Since [ilmath]A\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[/ilmath] was arbitrary, we have shown this for all such [ilmath]A[/ilmath], thus [ilmath]\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[/ilmath] is closed under complementation.
- Let [ilmath]A\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[/ilmath] be given.
- Closed under union: [ilmath]\forall A,B\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[A\cup B\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n][/ilmath]
- Let [ilmath]A,B\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[/ilmath] be given.
- By definition of union we see:
- [ilmath]\exists i\in\mathbb{N}[A\in\mathcal{A}_i][/ilmath] and
- [ilmath]\exists j\in\mathbb{N}[B\in\mathcal{A}_j][/ilmath]
- Define [ilmath]k:=\text{Max}(\{i,j\})[/ilmath]
- Now [ilmath]\mathcal{A}_i\subseteq\mathcal{A}_k[/ilmath] and [ilmath]\mathcal{A}_j\subseteq\mathcal{A}_k[/ilmath] (at least one of these will be strict equality, it matters not which)
- Thus [ilmath]A,B\in\mathcal{A}_k[/ilmath]
- As [ilmath]\mathcal{A}_k[/ilmath] is an algebra of sets:
- [ilmath]\forall C,D\in\mathcal{A}_k[C\cup D\in\mathcal{A}_k][/ilmath]
- Thus [ilmath]A\cup B\in\mathcal{A}_k[/ilmath]
- So [ilmath]A\cup B\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[/ilmath] (explicitly, [ilmath]\exists h\in\mathbb{N}[A\cup B\in\mathcal{A}_h][/ilmath] - namely choosing [ilmath]h[/ilmath] to be [ilmath]k[/ilmath] as we have defined it, and we have this if and only if [ilmath]A\cup B[/ilmath] is in the union, by the definition of union)
- By definition of union we see:
- Since [ilmath]A,B\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[/ilmath] were arbitrary we have shown this for all such [ilmath]A[/ilmath] and [ilmath]B[/ilmath]. As required.
- Let [ilmath]A,B\in\bigcup_{n\in\mathbb{N} }\mathcal{A}_n[/ilmath] be given.
Part ii)
Check that if the [ilmath]A_n[/ilmath] are all sigma-algebras that their union need not be a sigma-algebra.
Is a countable union of sigma-algebras (whether monotonic or not) an algebra?
- Hint: Try considering the set of all positive integers, [ilmath]\mathbb{Z}_{\ge 1} [/ilmath] with its sigma-algebras [ilmath]\mathcal{A}_n:=\sigma(\mathcal{C}_n)[/ilmath] where [ilmath]\mathcal{C}_n:=\mathcal{P}(\{1,2,\ldots,n\})[/ilmath] where [ilmath]\{1,2,\ldots,n\}\subset\mathbb{N}[/ilmath] and [ilmath]\mathcal{P} [/ilmath] denotes the power set
Check that if [ilmath]\mathcal{B}_1[/ilmath] and [ilmath]\mathcal{B}_2[/ilmath] are sigma-algebras that their union need not be an algebra of sets
Notes
References