Notes:Homology
From Maths
Definitions
- Boundary operator: ∂n:Cn→Cn−1 given by ∂n:[a0,…an]↦∑ni=0(−1)i[a0,…,^ai,…,an]
- n-cycles: Zn (a cycle is defined to have boundary 0, thus Zn=Ker(∂n) - todo - discussion)
- n-boundaries: Bn (the image of ∂n+1 - all boundaries)
- Claim: Bn≤Zn (that is: Bn is a subgroup of Zn)
- nth homology group: Hn:=Zn/Bn
Examples 1: G1
Chain complex:
∂1:C1→C0 morphism:
- We have:
- ∂1(a)=y−x,
- ∂1(b)=z−y,
- ∂1(c)=x−z and
- ∂1(d)=x−z also
- We extend this to a group homomorphism by defining:
- ∂1(αa+βb+γc+δd):=α∂1(a)+β∂1(b)+γ∂1(c)+δ∂1(d)=α(y−x)+β(z−y)+(γ+δ)(x−z)=(−α+γ+δ)x+(α−β)y+(−γ−δ)z, we may write: (xyz)=α(−110)+β(0−11)+γ(0−1−1)+δ(0−1−1)=(−10001−1−1−101−1−1)(αβγδ)
Computing the homology groups:
- H0:=Z0/B0=Ker(∂0)/Im(∂1)
- Computing Ker(∂0) (result: Ker(∂0)=C0)
- By definition, ∂0:[a0]↦0, so everything in the domain of ∂0 is in the kernel!
- Thus Z0=C0
- Computing Im(∂1)
- Computing Ker(∂0) (result: Ker(∂0)=C0)