Notes:Hereditary sigma-ring/Facts
From Maths
< Notes:Hereditary sigma-ring
Revision as of 01:14, 8 April 2016 by Alec (Talk | contribs) (Created page with "# An hereditary system is a sigma-ring {{M|\iff}} it is closed under countable unions. #* Thus {{M|\sigma_R(\mathcal{H}(S))}} is just {{M|\mathcal{H}(S)}} with the additional...")
- An hereditary system is a sigma-ring [ilmath]\iff[/ilmath] it is closed under countable unions.
- Thus [ilmath]\sigma_R(\mathcal{H}(S))[/ilmath] is just [ilmath]\mathcal{H}(S)[/ilmath] with the additional property:
- [ilmath]\forall(A_n)_{n=1}^\infty\subseteq\mathcal{H}(S)\left[\bigcup_{n=1}^\infty A_n\in\sigma_R(\mathcal{H}(S))\right][/ilmath]
- Thus [ilmath]\sigma_R(\mathcal{H}(S))[/ilmath] is just [ilmath]\mathcal{H}(S)[/ilmath] with the additional property:
- [ilmath]\mathcal{H}(\mathcal{R})[/ilmath] is a [ilmath]\sigma[/ilmath]-ring (for any [ilmath]\sigma[/ilmath]-ring, [ilmath]\mathcal{R} [/ilmath])
- This means [ilmath]\sigma_R(\mathcal{H}(\mathcal{R}))=\mathcal{H}(\mathcal{R})[/ilmath]
- It also means [ilmath]\mathcal{H}(\sigma_R(S))[/ilmath] is a [ilmath]\sigma[/ilmath]-ring
- [ilmath]\sigma_R(\mathcal{H}(S))[/ilmath] is just [ilmath]\mathcal{H}(S)[/ilmath] closed under countable union.