Difference between revisions of "Notes:Homology/Real projective plane"
From Maths
(Fixed some typos, added "skeleton" of second "set up" for RP2) |
m (→{{M|\mathbb{RP}^2_B}}: Forgot overflow) |
||
| Line 23: | Line 23: | ||
=={{M|\mathbb{RP}^2_B}}== | =={{M|\mathbb{RP}^2_B}}== | ||
| − | <div style="float:right;margin:0px;margin-right:0.2em;max-width:25em;"> | + | <div style="float:right;margin:0px;margin-right:0.2em;max-width:25em;overflow:hidden;"> |
{| class="wikitable" border="1" style="margin:0px;" | {| class="wikitable" border="1" style="margin:0px;" | ||
| <center><span style="font-size:1.5em;"><m>\xymatrix{ w\ \bullet \ar@{<-}[rr]^a \ar@<.8ex>[d]_b & & \bullet\ v \ar@<-.8ex>@{<-}[d]^b \\ v\ \bullet \ar[rr]_a & & \bullet\ w}</m></span></center><br/>Text | | <center><span style="font-size:1.5em;"><m>\xymatrix{ w\ \bullet \ar@{<-}[rr]^a \ar@<.8ex>[d]_b & & \bullet\ v \ar@<-.8ex>@{<-}[d]^b \\ v\ \bullet \ar[rr]_a & & \bullet\ w}</m></span></center><br/>Text | ||
Revision as of 01:40, 16 October 2016
[ilmath]\mathbb{RP}^2_A[/ilmath]
The chain complexes are: [ilmath]\xymatrix{ 0 \ar[r]^{\partial_3} & C_2 \ar[r]^{\partial_2} \ar@2{->}[d] & C_1 \ar[r]^{\partial_1} \ar@2{->}[d] & C_0 \ar[r]^{\partial_0=0} \ar@2{->}[d] & 0 \\ & \langle P\rangle\cong\mathbb{Z}^1 & \langle a\rangle\cong\mathbb{Z}^1 & \langle v\rangle\cong\mathbb{Z}^1 }[/ilmath]with:
- [ilmath]\partial_2(P)=a+a=2a[/ilmath]
- [ilmath]\partial_1(a)=v-v=0[/ilmath]
- [ilmath]\partial_0(v)=0[/ilmath]
On paper I ended up with:
- [ilmath]H_0\cong\mathbb{Z}[/ilmath]
- [ilmath]H_1\cong\frac{\mathbb{Z} }{2\mathbb{Z} }[/ilmath]
- [ilmath]H_2\cong 0[/ilmath]
[ilmath]\mathbb{RP}^2_B[/ilmath]
The chain complexes are: [ilmath]\xymatrix{0 \ar[r]^{\partial_3} & C_2 \ar[r]^{\partial_2} \ar@2{->}[d] & C_1 \ar[r]^{\partial_1} \ar@2{->}[d] & C_0 \ar[r]^{\partial_0=0} \ar@2{->}[d] & 0 \\ & \langle P\rangle\cong\mathbb{Z}^1 & \langle a, b\rangle\cong\mathbb{Z}^2 & \langle v,w\rangle\cong\mathbb{Z}^2 }[/ilmath]With:
- [ilmath]\partial_2(P)=2(a+b)[/ilmath]
- [ilmath]\partial_1[/ilmath]
- [ilmath]\partial_1(a)=w-v[/ilmath]
- [ilmath]\partial_1(b)=v-w[/ilmath]
- [ilmath]\partial_0[/ilmath]
- [ilmath]\partial_0(v)=0[/ilmath]
- [ilmath]\partial_0(w)=0[/ilmath]
On paper I ended up with:
- [ilmath]H_2\cong 0[/ilmath]
- [ilmath]H_1\cong\frac{\mathbb{Z} }{2\mathbb{Z} }[/ilmath]
- [ilmath]H_0\cong\mathbb{Z}[/ilmath]