Difference between revisions of "Disjoint union topology"

From Maths
Jump to: navigation, search
m
m (Alec moved page Coproduct topology to Disjoint union topology: Silly name change TBH. Leaving redirect behind)
(No difference)

Revision as of 18:33, 24 September 2016

Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Grade A until it is more presentable.

Definition

Suppose ((Xα,Jα))αI be an indexed family of topological spaces that are non-empty[1], the disjoint union topology is a topological space:

  • with underlying set αIXα, this is the disjoint union of sets, recall (x,β)αIXαβIxXβ and
  • The topology where UP(αIXα) is considered open if and only if αI[XαUJα][Note 1] - be sure to notice the abuse of notation going on here.

TODO: Flesh out notes, mention subspace Xα×{α} and such


Claim 1: this is indeed a topology

Proof of claims

(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
Actually surprisingly easy to prove, done on paper. page 1, 7/8/2016, Intro to top manifolds notes. Filed

Notes

  1. Jump up There's a very nasty abuse of notation going on here. First, note a set U is going to be a bunch of points of the form (x,γ) for various xs and γs (I). There is no "canonical projection" FROM the product to the spaces, as this would not be a function!

References

  1. Jump up Introduction to Topological Manifolds - John M. Lee



TODO: Investigate the need to be non-empty, I suspect it's because the union "collapses" in this case, and the space wouldn't be a part of union