Difference between revisions of "Hereditary sigma-ring"

From Maths
Jump to: navigation, search
(Created page with "{{DISPLAYTITLE:Hereditary {{sigma|ring}}}}{{Stub page|Ideally another references, more properties. Additionally the "use" section requires expansion. Comment on power-set and...")
 
(Maybe note a synonym: sigma-ideal)
Line 1: Line 1:
{{DISPLAYTITLE:Hereditary {{sigma|ring}}}}{{Stub page|Ideally another references, more properties. Additionally the "use" section requires expansion. Comment on power-set and sigma-algebra special case.}}
+
{{DISPLAYTITLE:Hereditary {{sigma|ring}}}}{{Stub page|Ideally another references, more properties. Additionally the "use" section requires expansion. Comment on power-set and sigma-algebra special case. Maybe note a synonym: sigma-ideal}}
 
==Definition==
 
==Definition==
 
A ''hereditary {{sigma|ring}}'', {{M|\mathcal{H} }}, is a system of sets that is both [[hereditary (measure theory)|hereditary]] and a [[sigma-ring|{{sigma|ring}}]]{{rMTH}}. This means {{M|\mathcal{H} }} has the following properties:
 
A ''hereditary {{sigma|ring}}'', {{M|\mathcal{H} }}, is a system of sets that is both [[hereditary (measure theory)|hereditary]] and a [[sigma-ring|{{sigma|ring}}]]{{rMTH}}. This means {{M|\mathcal{H} }} has the following properties:

Revision as of 15:47, 8 April 2016

(Unknown grade)
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Ideally another references, more properties. Additionally the "use" section requires expansion. Comment on power-set and sigma-algebra special case. Maybe note a synonym: sigma-ideal

Definition

A hereditary σ-ring, H, is a system of sets that is both hereditary and a σ-ring[1]. This means H has the following properties:

  1. AHBP(A)[BH] - hereditary - all subsets of any set in H are in H.
  2. (An)n=1H[n=1AnH] - σ--closed, closed under countable union.

Immediate properties

  • H is closed under set subtraction
    • That is: A,BH[ABH] - hereditary-ness is sufficient for this.
  • H

TODO: Format these using inline theorem boxes, proofs are so easy that the "requires proof" tag would be overkill


Use

Hereditary σ-rings are used when going from a pre-measure to an outer-measure.

See also

References

  1. Jump up Measure Theory - Paul R. Halmos