Difference between revisions of "Mdm of the Poisson distribution"
From Maths
m (Typo on 2nd line!) |
m (Finished!) |
||
Line 2: | Line 2: | ||
==Statement== | ==Statement== | ||
Let {{M|X\sim}}[[Poisson distribution|{{M|\text{Poi} }}]]{{M|(\lambda)}} for some {{M|\lambda\in\mathbb{R}_{>0} }}. {{M|X}} may take any value in {{M|\mathbb{N}_0}} | Let {{M|X\sim}}[[Poisson distribution|{{M|\text{Poi} }}]]{{M|(\lambda)}} for some {{M|\lambda\in\mathbb{R}_{>0} }}. {{M|X}} may take any value in {{M|\mathbb{N}_0}} | ||
+ | |||
+ | |||
+ | We will show that | ||
+ | * {{MM|\text{Mdm}(X)\eq 2\lambda e^{-\lambda}\frac{\lambda^u}{u!} }}<ref>Alec's own work, I actually kept muddling it up on paper so this page IS the reference!</ref> | ||
+ | ** Where {{M|u:\eq}}[[Floor (function)|{{M|\text{Floor}(\lambda)}}]] | ||
+ | |||
+ | I have confirmed this [[experimental confirmation|experimentally]] in ''[[Experimental evidence for the Mdm of the Poisson distribution]]'' | ||
Recall the [[Mdm]] is defined as: | Recall the [[Mdm]] is defined as: | ||
* {{MM|\text{Mdm}(X):\eq\mathbb{E}\Big[\ \big\vert X-\mathbb{E}[X]\big\vert\ \Big]}} | * {{MM|\text{Mdm}(X):\eq\mathbb{E}\Big[\ \big\vert X-\mathbb{E}[X]\big\vert\ \Big]}} | ||
− | + | <!-- | |
I kept messing up on paper, so I write the calculations here | I kept messing up on paper, so I write the calculations here | ||
− | + | ||
+ | |||
+ | NON STANDARD MACROS DEFINED HERE | ||
+ | |||
+ | |||
+ | --> | ||
{{M|\newcommand{\LHS}[0]{ {\text{Mdm}(X)} } }} | {{M|\newcommand{\LHS}[0]{ {\text{Mdm}(X)} } }} | ||
==Calculation== | ==Calculation== | ||
Line 17: | Line 29: | ||
**# if {{M|k\le \lambda\ \implies\ k-\lambda\le 0\ \implies \lambda-k\ge 0\ \implies \vert k-\lambda\vert \eq \lambda-k}} | **# if {{M|k\le \lambda\ \implies\ k-\lambda\le 0\ \implies \lambda-k\ge 0\ \implies \vert k-\lambda\vert \eq \lambda-k}} | ||
** Define the following two values: | ** Define the following two values: | ||
− | **# {{M|u:\eq\text{RoundDownToInt}(\lambda)}}<ref group="Note">Recall {{M|\lambda>0}}, this means {{M|u\ge 0}} and thus {{M|u\in\mathbb{N}_0}}</ref> and | + | **# {{M|u:\eq\text{RoundDownToInt}(\lambda)}}<ref group="Note">Recall {{M|\lambda>0}}, this means {{M|u\ge 0}} and thus {{M|u\in\mathbb{N}_0}}</ref> (also known as the [[floor function]]<ref group="Note">Which is sometimes written: |
+ | * {{XXX|It's {{C|[n]}} but with the bottom or top notches removed from the square brackets?}}</ref> and | ||
**# {{M|v:\eq u+1}}<ref group="Note">Notice: | **# {{M|v:\eq u+1}}<ref group="Note">Notice: | ||
* If {{M|\lambda}} is not {{M|\in\mathbb{N}_{\ge 0} }} then {{M|u+1\eq\text{RoundUpToInt}(\lambda)}}, so {{M|u+1\eq v\ge \lambda}} | * If {{M|\lambda}} is not {{M|\in\mathbb{N}_{\ge 0} }} then {{M|u+1\eq\text{RoundUpToInt}(\lambda)}}, so {{M|u+1\eq v\ge \lambda}} | ||
Line 45: | Line 58: | ||
**: {{MM|\eq e^{-\lambda}{\left[\lambda\ +\ \lambda{\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ \lambda{\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]} }} | **: {{MM|\eq e^{-\lambda}{\left[\lambda\ +\ \lambda{\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ \lambda{\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]} }} | ||
**: {{MM|\eq \lambda e^{-\lambda}{\left[1\ +\ {\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ {\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]} }} | **: {{MM|\eq \lambda e^{-\lambda}{\left[1\ +\ {\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ {\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]} }} | ||
+ | ** For convienence let us assign the sums letters: | ||
+ | *** {{MM|\eq \lambda e^{-\lambda}{\Bigg[1\ +\ \underbrace{\sum^u_{k\eq 1}\frac{\lambda^k}{k!} }_\text{A}\ -\ \underbrace{\sum^\infty_{k\eq v}\frac{\lambda^k}{k!} }_\text{B}\ +\ \underbrace{\sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!} }_\text{C}\ -\ \underbrace{\sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!} }_\text{D} \Bigg]} }} | ||
+ | ** Now we combine the sums: | ||
+ | *** {{MM|\LHS{}\eq\lambda e^{-\lambda}{\Bigg[1+\underbrace{\sum^{u-1}_{k\eq 1}\frac{\lambda^k}{k!}+\frac{\lambda^u}{u!} }_\text{A}\ -\ \underbrace{\sum_{k\eq v}^\infty \frac{\lambda^k}{k!} }_\text{B}\ +\ \underbrace{ \frac{\lambda^{v-1} }{(v-1)!}\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!} }_\text{C}\ -\ \underbrace{ \frac{\lambda^0}{0!}\ -\ \sum^{u-1}_{k\eq 1}\frac{\lambda^k}{k!} }_\text{D} \Bigg]} }} | ||
+ | ***: {{MM|\eq \lambda e^{-\lambda}{\Bigg[ 1\ -\ \frac{\lambda^0}{0!} \ +\ \frac{\lambda^u }{u!} \ +\ \frac{\lambda^{v-1} }{(v-1)!} \Bigg]} }} - as the sum above in {{Mtxt|A}} cancels with the sum part of {{Mtxt|D}}, and {{Mtxt|B}} cancels with the sum part of {{Mtxt|C}} | ||
+ | ***: {{MM|\eq \lambda e^{-\lambda}{\left[ 1-1+2\frac{\lambda^u}{u!} \right]} }} - using that {{M|v-1\eq u}} and tidying up | ||
+ | ***: {{MM|\eq 2\lambda e^{-\lambda}\frac{\lambda^u}{u!} }} | ||
+ | * '''Thus we see''' <span style="font-size:1.5em;">{{MM|\text{Mdm}(X)\eq 2\lambda e^{-\lambda}\frac{\lambda^u}{u!} }}</span> | ||
− | |||
==Notes== | ==Notes== | ||
− | |||
<references group="Note"/> | <references group="Note"/> | ||
− | </ | + | ==References== |
+ | <references/> | ||
{{Theorem Of|Probability|Statistics|Elementary Probability}} | {{Theorem Of|Probability|Statistics|Elementary Probability}} |
Latest revision as of 00:27, 8 November 2017
TODO: Link with Poisson distribution page
Contents
[hide]Statement
Let X∼Poi(λ) for some λ∈R>0. X may take any value in N0
We will show that
I have confirmed this experimentally in Experimental evidence for the Mdm of the Poisson distribution
Recall the Mdm is defined as:
- Mdm(X):=E[ |X−E[X]| ]
Calculation
- Mdm(X):=E[ |X−E[X]| ]:=∞∑k=0|X−E[X]|⋅P[X=k]
- =e−λ ∞∑k=0λkk!|k−E[X]|=e−λ ∞∑k=0λkk!|k−λ|
- Note that:
- if k≥λ ⟹ k−λ≥0 ⟹ |k−λ|=k−λ
- if k≤λ ⟹ k−λ≤0 ⟹λ−k≥0 ⟹|k−λ|=λ−k
- Define the following two values:
- u:=RoundDownToInt(λ)[Note 1] (also known as the floor function[Note 2] and
- v:=u+1[Note 3]
- This means we have u≤λ and v≥λ, specifically, we have the following two cases:
- if k≤u and as u≤λ we see k≤λ and
- if k>u then k≥u+1=v≥λ so k≥λ
- Now, from above: Mdm(X)=e−λ ∞∑k=0λkk!|k−λ|
- =e−λ[λ00!|0−λ| + ∞∑k=1λkk!|k−λ|]
- =e−λ[λ + u∑k=1λkk!|k−λ| + ∞∑k=vλkk!|k−λ|]with the understanding that if u=0 that the sum from k=1 to u evaluates to 0, obviously
- =e−λ[λ00!|0−λ| + ∞∑k=1λkk!|k−λ|]
- Notice now that:
- For the first sum, where 1≤k≤u (specifically that k≤u) we have k≤λ
- and that from further above we noticed if k≤λ then |k−λ|=λ−k
- For the second sum, where k>u that this meant k≥λ
- and that from further above we noticed if k≥λ then |k−λ|=k−λ, so
- For the first sum, where 1≤k≤u (specifically that k≤u) we have k≤λ
- Mdm(X)=e−λ[λ + u∑k=1λkk!|k−λ| + ∞∑k=vλkk!|k−λ|]
- =e−λ[λ + u∑k=1λkk!(λ−k) + ∞∑k=vλkk!(k−λ)]
- we now expand these sums:
- =e−λ[λ + first sum⏞u∑k=1λk+1k! − u∑k=1kλkk! + second sum⏞∞∑k=vkλkk!−∞∑k=vλk+1k! ]
- =e−λ[λ + λ(u∑k=1λkk! − ∞∑k=vλkk!) + (∞∑k=vλk(k−1)! − u∑k=1λk(k−1)!)], by grouping the terms and factorising where we can
- =e−λ[λ + λ(u∑k=1λkk! − ∞∑k=vλkk!) + (∞∑k=v−1λk+1k! − u−1∑k=0λk+1k!)][Note 4] by reindexing the latter two sums
- =e−λ[λ + λ(u∑k=1λkk! − ∞∑k=vλkk!) + λ(∞∑k=v−1λkk! − u−1∑k=0λkk!)]
- =λe−λ[1 + (u∑k=1λkk! − ∞∑k=vλkk!) + (∞∑k=v−1λkk! − u−1∑k=0λkk!)]
- =e−λ[λ + u∑k=1λkk!(λ−k) + ∞∑k=vλkk!(k−λ)]
- For convienence let us assign the sums letters:
- =λe−λ[1 + u∑k=1λkk!⏟A − ∞∑k=vλkk!⏟B + ∞∑k=v−1λkk!⏟C − u−1∑k=0λkk!⏟D]
- =λe−λ[1 + u∑k=1λkk!⏟A − ∞∑k=vλkk!⏟B + ∞∑k=v−1λkk!⏟C − u−1∑k=0λkk!⏟D]
- Now we combine the sums:
- Mdm(X)=λe−λ[1+u−1∑k=1λkk!+λuu!⏟A − ∞∑k=vλkk!⏟B + λv−1(v−1)! + ∞∑k=vλkk!⏟C − λ00! − u−1∑k=1λkk!⏟D]
- =λe−λ[1 − λ00! + λuu! + λv−1(v−1)!]- as the sum above in A cancels with the sum part of D , and B cancels with the sum part of C
- =λe−λ[1−1+2λuu!]- using that v−1=u and tidying up
- =2λe−λλuu!
- =λe−λ[1 − λ00! + λuu! + λv−1(v−1)!]
- Mdm(X)=λe−λ[1+u−1∑k=1λkk!+λuu!⏟A − ∞∑k=vλkk!⏟B + λv−1(v−1)! + ∞∑k=vλkk!⏟C − λ00! − u−1∑k=1λkk!⏟D]
- =e−λ ∞∑k=0λkk!|k−E[X]|
- Thus we see Mdm(X)=2λe−λλuu!
Notes
- Jump up ↑ Recall λ>0, this means u≥0 and thus u∈N0
- Jump up ↑ Which is sometimes written:
- TODO: It's [n] but with the bottom or top notches removed from the square brackets?
-
- Jump up ↑ Notice:
- If λ is not ∈N≥0 then u+1=RoundUpToInt(λ), so u+1=v≥λ
- If λ is in N≥0 then u=λ and v=u+1>u=λ so v>λ
- Notice (v>λ)⟹(v≥λ)
- Jump up ↑ Note that the third sum should have "∞−1" as its upper index, however remember that when a sum is to ∞ this is actually a limit, it was in this case:
- limn→∞(n∑k=v⋯)
- limn→∞(n−1∑k=v−1⋯)
- limn→∞(n∑k=v⋯)
References
- Jump up ↑ Alec's own work, I actually kept muddling it up on paper so this page IS the reference!
Categories:
- XXX Todo
- Todo
- Theorems
- Theorems, lemmas and corollaries
- Probability Theorems
- Probability Theorems, lemmas and corollaries
- Probability
- Statistics Theorems
- Statistics Theorems, lemmas and corollaries
- Statistics
- Elementary Probability Theorems
- Elementary Probability Theorems, lemmas and corollaries
- Elementary Probability