Difference between revisions of "Mdm of the Poisson distribution"

From Maths
Jump to: navigation, search
m (Typo on 2nd line!)
m (Finished!)
 
Line 2: Line 2:
 
==Statement==
 
==Statement==
 
Let {{M|X\sim}}[[Poisson distribution|{{M|\text{Poi} }}]]{{M|(\lambda)}} for some {{M|\lambda\in\mathbb{R}_{>0} }}. {{M|X}} may take any value in {{M|\mathbb{N}_0}}
 
Let {{M|X\sim}}[[Poisson distribution|{{M|\text{Poi} }}]]{{M|(\lambda)}} for some {{M|\lambda\in\mathbb{R}_{>0} }}. {{M|X}} may take any value in {{M|\mathbb{N}_0}}
 +
 +
 +
We will show that
 +
* {{MM|\text{Mdm}(X)\eq 2\lambda e^{-\lambda}\frac{\lambda^u}{u!} }}<ref>Alec's own work, I actually kept muddling it up on paper so this page IS the reference!</ref>
 +
** Where {{M|u:\eq}}[[Floor (function)|{{M|\text{Floor}(\lambda)}}]]
 +
 +
I have confirmed this [[experimental confirmation|experimentally]] in ''[[Experimental evidence for the Mdm of the Poisson distribution]]''
  
 
Recall the [[Mdm]] is defined as:
 
Recall the [[Mdm]] is defined as:
 
* {{MM|\text{Mdm}(X):\eq\mathbb{E}\Big[\ \big\vert X-\mathbb{E}[X]\big\vert\ \Big]}}
 
* {{MM|\text{Mdm}(X):\eq\mathbb{E}\Big[\ \big\vert X-\mathbb{E}[X]\big\vert\ \Big]}}
 
+
<!--
 
I kept messing up on paper, so I write the calculations here
 
I kept messing up on paper, so I write the calculations here
  
'''Macros follow this''' (if any non standard)
+
 
 +
 
 +
                            NON STANDARD MACROS DEFINED HERE
 +
 
 +
 
 +
-->
 
{{M|\newcommand{\LHS}[0]{ {\text{Mdm}(X)} } }}
 
{{M|\newcommand{\LHS}[0]{ {\text{Mdm}(X)} } }}
 
==Calculation==
 
==Calculation==
Line 17: Line 29:
 
**# if {{M|k\le \lambda\ \implies\ k-\lambda\le 0\ \implies \lambda-k\ge 0\ \implies \vert k-\lambda\vert \eq \lambda-k}}
 
**# if {{M|k\le \lambda\ \implies\ k-\lambda\le 0\ \implies \lambda-k\ge 0\ \implies \vert k-\lambda\vert \eq \lambda-k}}
 
** Define the following two values:
 
** Define the following two values:
**# {{M|u:\eq\text{RoundDownToInt}(\lambda)}}<ref group="Note">Recall {{M|\lambda>0}}, this means {{M|u\ge 0}} and thus {{M|u\in\mathbb{N}_0}}</ref> and
+
**# {{M|u:\eq\text{RoundDownToInt}(\lambda)}}<ref group="Note">Recall {{M|\lambda>0}}, this means {{M|u\ge 0}} and thus {{M|u\in\mathbb{N}_0}}</ref> (also known as the [[floor function]]<ref group="Note">Which is sometimes written:
 +
* {{XXX|It's {{C|[n]}} but with the bottom or top notches removed from the square brackets?}}</ref> and
 
**# {{M|v:\eq u+1}}<ref group="Note">Notice:
 
**# {{M|v:\eq u+1}}<ref group="Note">Notice:
 
* If {{M|\lambda}} is not {{M|\in\mathbb{N}_{\ge 0} }} then {{M|u+1\eq\text{RoundUpToInt}(\lambda)}}, so {{M|u+1\eq v\ge \lambda}}
 
* If {{M|\lambda}} is not {{M|\in\mathbb{N}_{\ge 0} }} then {{M|u+1\eq\text{RoundUpToInt}(\lambda)}}, so {{M|u+1\eq v\ge \lambda}}
Line 45: Line 58:
 
**: {{MM|\eq e^{-\lambda}{\left[\lambda\ +\ \lambda{\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ \lambda{\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]} }}
 
**: {{MM|\eq e^{-\lambda}{\left[\lambda\ +\ \lambda{\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ \lambda{\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]} }}
 
**: {{MM|\eq \lambda e^{-\lambda}{\left[1\ +\ {\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ {\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]} }}
 
**: {{MM|\eq \lambda e^{-\lambda}{\left[1\ +\ {\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ {\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]} }}
 +
** For convienence let us assign the sums letters:
 +
*** {{MM|\eq \lambda e^{-\lambda}{\Bigg[1\ +\ \underbrace{\sum^u_{k\eq 1}\frac{\lambda^k}{k!} }_\text{A}\ -\ \underbrace{\sum^\infty_{k\eq v}\frac{\lambda^k}{k!} }_\text{B}\ +\ \underbrace{\sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!} }_\text{C}\ -\ \underbrace{\sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!} }_\text{D} \Bigg]} }}
 +
** Now we combine the sums:
 +
*** {{MM|\LHS{}\eq\lambda e^{-\lambda}{\Bigg[1+\underbrace{\sum^{u-1}_{k\eq 1}\frac{\lambda^k}{k!}+\frac{\lambda^u}{u!} }_\text{A}\ -\ \underbrace{\sum_{k\eq v}^\infty \frac{\lambda^k}{k!} }_\text{B}\ +\ \underbrace{ \frac{\lambda^{v-1} }{(v-1)!}\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!} }_\text{C}\ -\ \underbrace{ \frac{\lambda^0}{0!}\ -\ \sum^{u-1}_{k\eq 1}\frac{\lambda^k}{k!} }_\text{D} \Bigg]} }}
 +
***: {{MM|\eq \lambda e^{-\lambda}{\Bigg[ 1\ -\ \frac{\lambda^0}{0!} \ +\ \frac{\lambda^u }{u!} \ +\ \frac{\lambda^{v-1} }{(v-1)!} \Bigg]} }} - as the sum above in {{Mtxt|A}}  cancels with the sum part of {{Mtxt|D}}, and {{Mtxt|B}} cancels with the sum part of {{Mtxt|C}}
 +
***: {{MM|\eq \lambda e^{-\lambda}{\left[ 1-1+2\frac{\lambda^u}{u!} \right]} }} - using that {{M|v-1\eq u}} and tidying up
 +
***: {{MM|\eq 2\lambda e^{-\lambda}\frac{\lambda^u}{u!} }}
 +
* '''Thus we see''' <span style="font-size:1.5em;">{{MM|\text{Mdm}(X)\eq 2\lambda e^{-\lambda}\frac{\lambda^u}{u!} }}</span>
  
{{Todo|Keep going, there's some heavy cancelling out about to happen! '''DON'T FORGET TO REMOVE DIV AROUND NOTES SO THEY'RE NORMAL SIZE!'''}}
 
 
==Notes==
 
==Notes==
<div style="font-size:0.6em;">
 
 
<references group="Note"/>
 
<references group="Note"/>
</div>
+
==References==
 +
<references/>
 
{{Theorem Of|Probability|Statistics|Elementary Probability}}
 
{{Theorem Of|Probability|Statistics|Elementary Probability}}

Latest revision as of 00:27, 8 November 2017


TODO: Link with Poisson distribution page


Statement

Let XPoi(λ) for some λR>0. X may take any value in N0


We will show that

I have confirmed this experimentally in Experimental evidence for the Mdm of the Poisson distribution

Recall the Mdm is defined as:

  • Mdm(X):=E[ |XE[X]| ]

Calculation

  • Mdm(X):=E[ |XE[X]| ]
    :=k=0|XE[X]|P[X=k]
    =eλ k=0λkk!|kE[X]|
    =eλ k=0λkk!|kλ|
    • Note that:
      1. if kλ  kλ0  |kλ|=kλ
      2. if kλ  kλ0 λk0 |kλ|=λk
    • Define the following two values:
      1. u:=RoundDownToInt(λ)[Note 1] (also known as the floor function[Note 2] and
      2. v:=u+1[Note 3]
      • This means we have uλ and vλ, specifically, we have the following two cases:
        1. if ku and as uλ we see kλ and
        2. if k>u then ku+1=vλ so kλ
    • Now, from above: Mdm(X)=eλ k=0λkk!|kλ|
      =eλ[λ00!|0λ| + k=1λkk!|kλ|]
      =eλ[λ + uk=1λkk!|kλ| + k=vλkk!|kλ|]
      with the understanding that if u=0 that the sum from k=1 to u evaluates to 0, obviously
    • Notice now that:
      1. For the first sum, where 1ku (specifically that ku) we have kλ
        • and that from further above we noticed if kλ then |kλ|=λk
      2. For the second sum, where k>u that this meant kλ
        • and that from further above we noticed if kλ then |kλ|=kλ, so
    • Mdm(X)=eλ[λ + uk=1λkk!|kλ| + k=vλkk!|kλ|]
      =eλ[λ + uk=1λkk!(λk) + k=vλkk!(kλ)]
      • we now expand these sums:
      =eλ[λ + first sumuk=1λk+1k!  uk=1kλkk! + second sumk=vkλkk!k=vλk+1k! ]
      =eλ[λ + λ(uk=1λkk!  k=vλkk!) + (k=vλk(k1)!  uk=1λk(k1)!)]
      , by grouping the terms and factorising where we can
      =eλ[λ + λ(uk=1λkk!  k=vλkk!) + (k=v1λk+1k!  u1k=0λk+1k!)]
      [Note 4] by reindexing the latter two sums
      =eλ[λ + λ(uk=1λkk!  k=vλkk!) + λ(k=v1λkk!  u1k=0λkk!)]
      =λeλ[1 + (uk=1λkk!  k=vλkk!) + (k=v1λkk!  u1k=0λkk!)]
    • For convienence let us assign the sums letters:
      • =λeλ[1 + uk=1λkk!A  k=vλkk!B + k=v1λkk!C  u1k=0λkk!D]
    • Now we combine the sums:
      • Mdm(X)=λeλ[1+u1k=1λkk!+λuu!A  k=vλkk!B + λv1(v1)! + k=vλkk!C  λ00!  u1k=1λkk!D]
        =λeλ[1  λ00! + λuu! + λv1(v1)!]
        - as the sum above in  A  cancels with the sum part of  D , and  B  cancels with the sum part of  C 
        =λeλ[11+2λuu!]
        - using that v1=u and tidying up
        =2λeλλuu!
  • Thus we see Mdm(X)=2λeλλuu!

Notes

  1. Jump up Recall λ>0, this means u0 and thus uN0
  2. Jump up Which is sometimes written:
    • TODO: It's [n] but with the bottom or top notches removed from the square brackets?
  3. Jump up Notice:
    • If λ is not N0 then u+1=RoundUpToInt(λ), so u+1=vλ
    • If λ is in N0 then u=λ and v=u+1>u=λ so v>λ
      • Notice (v>λ)(vλ)
    So either way, vλ
  4. Jump up Note that the third sum should have "1" as its upper index, however remember that when a sum is to this is actually a limit, it was in this case:
    • limn(nk=v)
    and became
    • limn(n1k=v1)

References

  1. Jump up Alec's own work, I actually kept muddling it up on paper so this page IS the reference!