Difference between revisions of "Topological space"
From Maths
m |
(Given page a much needed update. Marked as stub as there's still work to do.) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | {{Stub page|grade=A|msg=Hasn't been updated since March 2015, in April 2016 it was updated to modern format and cleaned up}} | |
− | ==Definition== | + | ==[[Topological space/Definition|Definition]]== |
− | + | {{:Topological space/Definition}} | |
− | + | ==Comparing topologies== | |
− | + | Given two ''topological spaces'', {{M|(X_1,\mathcal{J}_1)}} and {{M|(X_2,\mathcal{J}_2)}} we may be able to compare them; we say: | |
− | + | {| class="wikitable" border="1" | |
− | + | |- | |
− | + | ! Terminology | |
− | + | ! If | |
− | + | ! Comment | |
− | + | |- | |
− | + | ! {{Anchor|Coarser|Smaller|Weaker}}{{M|\mathcal{J}_1}} coarser{{rITTMJML}}/smaller/weaker {{M|\mathcal{J}_2}} | |
+ | | {{M|\mathcal{J}_1\subseteq\mathcal{J}_2}} | ||
+ | | Using the [[implies-subset relation]] we see that {{M|\mathcal{J}_1\subseteq\mathcal{J}_2\iff\forall S\in\mathcal{J}_1[S\in\mathcal{J}_2]}} | ||
+ | |- | ||
+ | ! {{Anchor|Finer|Larger|Stronger}}{{M|\mathcal{J}_1}} finer{{rITTMJML}}/larger/stronger {{M|\mathcal{J}_2}} | ||
+ | | {{M|\mathcal{J}_2\subseteq\mathcal{J}_1}} | ||
+ | | Again, same idea, {{M|\mathcal{J}_2\subseteq\mathcal{J}_2\iff\forall S\in\mathcal{J}_2[S\in\mathcal{J}_1]}} | ||
+ | |} | ||
+ | {{Requires references|grade=C|Need references for larger/smaller/stronger/weaker, Check Introduction To Topology - Mendelson, Addendum: investigate relating this to a [[poset]] (easy enough - not very useful / lacking practical applications)}} | ||
+ | ==Examples== | ||
+ | * Every [[Metric space|metric space]] induces a topology, see [[Topology induced by a metric|the topology induced by a metric space]] | ||
+ | * Given any set {{M|X}} we can always define the following two topologies on it: | ||
+ | *# [[Discrete topology]] - the topology {{M|1=\mathcal{J}=\mathcal{P}(X)}} - where {{M|\mathcal{P}(X)}} denotes the [[Power set|power set]] of {{M|X}} | ||
+ | *# [[Trivial topology]] - the topology {{M|1=\mathcal{J}=\{\emptyset, X\} }} | ||
==See Also== | ==See Also== | ||
− | * [[Topology]] | + | * [[Topology (subject)]] |
+ | * [[Topological property theorems]] | ||
+ | * [[Topology induced by a metric]] | ||
==References== | ==References== | ||
− | + | <references/> | |
− | + | {{Topology navbox|plain}} | |
{{Definition|Topology}} | {{Definition|Topology}} |
Latest revision as of 13:37, 20 April 2016
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Hasn't been updated since March 2015, in April 2016 it was updated to modern format and cleaned up
Definition
A topological space is a set X coupled with a "topology", \mathcal{J} on X. We denote this by the ordered pair (X,\mathcal{J}).
- A topology, \mathcal{J} is a collection of subsets of X, \mathcal{J}\subseteq\mathcal{P}(X) with the following properties[1][2][3]:
- Both \emptyset,X\in\mathcal{J}
- For the collection \{U_\alpha\}_{\alpha\in I}\subseteq\mathcal{J} where I is any indexing set, \cup_{\alpha\in I}U_\alpha\in\mathcal{J} - that is it is closed under union (infinite, finite, whatever - "closed under arbitrary union")
- For the collection \{U_i\}^n_{i=1}\subseteq\mathcal{J} (any finite collection of members of the topology) that \cap^n_{i=1}U_i\in\mathcal{J}
- We call the elements of \mathcal{J} "open sets", that is \forall S\in\mathcal{J}[S\text{ is an open set}] , each S is exactly what we call an 'open set'
As mentioned above we write the topological space as (X,\mathcal{J}); or just X if the topology on X is obvious from the context.
Comparing topologies
Given two topological spaces, (X_1,\mathcal{J}_1) and (X_2,\mathcal{J}_2) we may be able to compare them; we say:
Terminology | If | Comment |
---|---|---|
\mathcal{J}_1 coarser[2]/smaller/weaker \mathcal{J}_2 | \mathcal{J}_1\subseteq\mathcal{J}_2 | Using the implies-subset relation we see that \mathcal{J}_1\subseteq\mathcal{J}_2\iff\forall S\in\mathcal{J}_1[S\in\mathcal{J}_2] |
\mathcal{J}_1 finer[2]/larger/stronger \mathcal{J}_2 | \mathcal{J}_2\subseteq\mathcal{J}_1 | Again, same idea, \mathcal{J}_2\subseteq\mathcal{J}_2\iff\forall S\in\mathcal{J}_2[S\in\mathcal{J}_1] |
Grade: C
This page requires references, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.
The message provided is:
The message provided is:
Need references for larger/smaller/stronger/weaker, Check Introduction To Topology - Mendelson, Addendum: investigate relating this to a poset (easy enough - not very useful / lacking practical applications)
Examples
- Every metric space induces a topology, see the topology induced by a metric space
- Given any set X we can always define the following two topologies on it:
- Discrete topology - the topology \mathcal{J}=\mathcal{P}(X) - where \mathcal{P}(X) denotes the power set of X
- Trivial topology - the topology \mathcal{J}=\{\emptyset, X\}
See Also
References
- Jump up ↑ Topology - James R. Munkres
- ↑ Jump up to: 2.0 2.1 2.2 Introduction to Topological Manifolds - John M. Lee
- Jump up ↑ Introduction to Topology - Bert Mendelson
|