Difference between revisions of "Notes:Richard Sharp question"

From Maths
Jump to: navigation, search
(Created page with "==Problem== I wish to show: * <span style="font-size:1.1em;">{{MM|1=2\Vert f\Vert_\infty \sum_{k:(k-nx)^2\ge n^2\delta^2}{}^nC_kx^k(1-x)^{n-k}\le 2\Vert f\Vert_\infty \frac{1}...")
 
m (Adding TOC)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
__TOC__
 
==Problem==
 
==Problem==
 
I wish to show:
 
I wish to show:
Line 12: Line 13:
 
# {{MM|1=\sum^n_{k\eq 0}(k-nx)^2\ {}^nC_kx^k(1-x)^{n-1} \eq nx(1-x) }}
 
# {{MM|1=\sum^n_{k\eq 0}(k-nx)^2\ {}^nC_kx^k(1-x)^{n-1} \eq nx(1-x) }}
 
# {{MM|1=\sum^n_{k\eq 0}k\ {}^nC_kx^k(1-x)^{n-1}\eq nx}} - probably not important
 
# {{MM|1=\sum^n_{k\eq 0}k\ {}^nC_kx^k(1-x)^{n-1}\eq nx}} - probably not important
 +
==Possible solution==
 +
Starting from:
 +
* {{MM|1=\sum_{\begin{array}{c}0\le k\le n\\k:\vert x-\frac{k}{n}\vert\ge\delta\end{array} } \vert f(x)-f(\tfrac{k}{n})\vert\ {}^nC_kx^k(1-x)^{n-k} }}
 +
*: {{MM|1=\le 2\Vert f\Vert_\infty \sum_{\begin{array}{c}0\le k\le n\\k:\vert x-\frac{k}{n}\vert\ge\delta\end{array} }{}^nC_kx^k(1-x)^{n-k} }}  - by definition of the {{M|\Vert\cdot\Vert_\infty}} norm
 +
*: {{MM|\eq2\Vert f\Vert_\infty \sum_{\begin{array}{c}0\le k\le n\\k:(k-nx)^2\ge \delta^2n^2\end{array} }{}^nC_kx^k(1-x)^{n-k} }} - by faffing about with absolute values
 +
*: {{MM|1=\le 2\Vert f\Vert_\infty \sum_{\begin{array}{c}0\le k\le n\\k:(k-nx)^2\ge \delta^2n^2\end{array} }\frac{(k-nx)^2}{\delta^2n^2}\ {}^nC_kx^k(1-x)^{n-k} }} - as for such {{M|k}} we see {{MM|\frac{(k-nx)^2}{\delta^2n^2}\ge 1}}
 +
*: {{MM|1=\le 2\Vert f\Vert_\infty \sum^n_{k\eq 0}\frac{(k-nx)^2}{\delta^2n^2}\ {}^nC_kx^k(1-x)^{n-k} }} - because for the {{M|k}} terms added we see  {{MM|\frac{(k-nx)^2}{\delta^2n^2}\ {}^nC_kx^k(1-x)^{n-k}\ge 0}} - so it can only increase the summation's value
 +
*: {{MM|1=\eq \frac{2\Vert f\Vert_\infty}{\delta^2n^2} \sum^n_{k\eq 0}(k-nx)^2\ {}^nC_kx^k(1-x)^{n-k} }} - factoring
 +
*: {{MM|1=\eq \frac{2\Vert f\Vert_\infty}{\delta^2n^2}\cdot nx(1-x) }} (using result 2)
 +
*: {{MM|1=\le \frac{1}{4}n\frac{2\Vert f\Vert_\infty}{\delta^2n^2} }} - as {{M|x(1-x)\le\frac{1}{4} }}
 +
*: {{MM|1=\eq \frac{\Vert f\Vert_\infty}{2n\delta^2} }}

Latest revision as of 21:03, 25 November 2016

Problem

I wish to show:

  • [math]2\Vert f\Vert_\infty \sum_{k:(k-nx)^2\ge n^2\delta^2}{}^nC_kx^k(1-x)^{n-k}\le 2\Vert f\Vert_\infty \frac{1}{n^2\delta^2}\sum_{k\eq 0}^n(k-nx)^2\ {}^nC_kx^k(1-x)^{n-k}[/math]

I am completely happy with the LHS, I understand the RHS is probably best written as:

  • [math]2\Vert f\Vert_\infty \sum_{k\eq 0}^n\frac{(k-nx)^2}{n^2\delta^2}\ {}^nC_kx^k(1-x)^{n-k} [/math]

By hypothesis, for the summation on the LHS, [ilmath]k[/ilmath] is such that:

  • [ilmath](k-nx)^2\ge n^2\delta^2\implies\frac{(k-nx)^2}{n^2\delta^2}\ge 1[/ilmath]

I cannot see how to get to the RHS

Supporting equations

Note that:

  1. [math]\sum^n_{k\eq 0}{}^nC_kx^k(1-x)^{n-x}\eq 1[/math]
  2. [math]\sum^n_{k\eq 0}(k-nx)^2\ {}^nC_kx^k(1-x)^{n-1} \eq nx(1-x)[/math]
  3. [math]\sum^n_{k\eq 0}k\ {}^nC_kx^k(1-x)^{n-1}\eq nx[/math] - probably not important

Possible solution

Starting from:

  • [math]\sum_{\begin{array}{c}0\le k\le n\\k:\vert x-\frac{k}{n}\vert\ge\delta\end{array} } \vert f(x)-f(\tfrac{k}{n})\vert\ {}^nC_kx^k(1-x)^{n-k}[/math]
    [math]\le 2\Vert f\Vert_\infty \sum_{\begin{array}{c}0\le k\le n\\k:\vert x-\frac{k}{n}\vert\ge\delta\end{array} }{}^nC_kx^k(1-x)^{n-k}[/math] - by definition of the [ilmath]\Vert\cdot\Vert_\infty[/ilmath] norm
    [math]\eq2\Vert f\Vert_\infty \sum_{\begin{array}{c}0\le k\le n\\k:(k-nx)^2\ge \delta^2n^2\end{array} }{}^nC_kx^k(1-x)^{n-k} [/math] - by faffing about with absolute values
    [math]\le 2\Vert f\Vert_\infty \sum_{\begin{array}{c}0\le k\le n\\k:(k-nx)^2\ge \delta^2n^2\end{array} }\frac{(k-nx)^2}{\delta^2n^2}\ {}^nC_kx^k(1-x)^{n-k}[/math] - as for such [ilmath]k[/ilmath] we see [math]\frac{(k-nx)^2}{\delta^2n^2}\ge 1[/math]
    [math]\le 2\Vert f\Vert_\infty \sum^n_{k\eq 0}\frac{(k-nx)^2}{\delta^2n^2}\ {}^nC_kx^k(1-x)^{n-k}[/math] - because for the [ilmath]k[/ilmath] terms added we see [math]\frac{(k-nx)^2}{\delta^2n^2}\ {}^nC_kx^k(1-x)^{n-k}\ge 0[/math] - so it can only increase the summation's value
    [math]\eq \frac{2\Vert f\Vert_\infty}{\delta^2n^2} \sum^n_{k\eq 0}(k-nx)^2\ {}^nC_kx^k(1-x)^{n-k}[/math] - factoring
    [math]\eq \frac{2\Vert f\Vert_\infty}{\delta^2n^2}\cdot nx(1-x)[/math] (using result 2)
    [math]\le \frac{1}{4}n\frac{2\Vert f\Vert_\infty}{\delta^2n^2}[/math] - as [ilmath]x(1-x)\le\frac{1}{4} [/ilmath]
    [math]\eq \frac{\Vert f\Vert_\infty}{2n\delta^2}[/math]