Difference between revisions of "Geometric distribution/Infobox"
From Maths
(Pulling infobox out) |
m (Adding variance) |
||
Line 22: | Line 22: | ||
|data10={{MM|\mathbb{E}[X]\eq\frac{1}{p} }}<ref>See ''[[Expectation of the geometric distribution]]''</ref> | |data10={{MM|\mathbb{E}[X]\eq\frac{1}{p} }}<ref>See ''[[Expectation of the geometric distribution]]''</ref> | ||
|label11=[[Variance]]: | |label11=[[Variance]]: | ||
− | |data11={{Nowrap|{{ | + | |data11={{Nowrap|{{MM|\text{Var}(X)\eq\frac{1-p}{p^2} }}<ref>See ''[[Variance of the geometric distribution]]''</ref>}} |
}}<noinclude> | }}<noinclude> | ||
: '''PAGE FOR TRANSCLUSION, YOU PROBABLY WANT [[Geometric distribution|''GEOMETRIC DISTRIBUTION'']]''' | : '''PAGE FOR TRANSCLUSION, YOU PROBABLY WANT [[Geometric distribution|''GEOMETRIC DISTRIBUTION'']]''' |
Latest revision as of 15:13, 16 January 2018
Geometric Distribution | |
X∼Geo(p) for p the probability of each trials' success | |
X=k means that the first success occurred on the kth trial, k∈N≥1 | |
Definition | |
---|---|
Defined over | X may take values in N≥1={1,2,…} |
p.m.f | P[X=k]:=(1−p)k−1p |
c.d.f / c.m.f[Note 1] | P[X≤k]=1−(1−p)k |
cor: | P[X≥k]=(1−p)k−1 |
Properties | |
Expectation: | E[X]=1p [1]
|
Variance: | Var(X)=1−pp2 [2]
|
- PAGE FOR TRANSCLUSION, YOU PROBABLY WANT GEOMETRIC DISTRIBUTION
Notes
- Jump up ↑ Do we make this distinction for cumulative distributions?