Difference between revisions of "Canonical linear map"

From Maths
Jump to: navigation, search
(Created page with "==Definition== A ''canonical'' linear map, or ''natural'' linear map, is a linear map that can be stated independently of any basis.<ref>Linear Algebr...")
 
m (Projection of direct sum: needed to change a letter!)
Line 10: Line 10:
 
* <math>1_V:V\oplus W\rightarrow V</math> with <math>1_V:(v,w)\mapsto v</math>  
 
* <math>1_V:V\oplus W\rightarrow V</math> with <math>1_V:(v,w)\mapsto v</math>  
 
* <math>P_V:V\oplus W\rightarrow V\oplus W</math> with <math>P_V:(v,w)\mapsto (v,0_w)</math>
 
* <math>P_V:V\oplus W\rightarrow V\oplus W</math> with <math>P_V:(v,w)\mapsto (v,0_w)</math>
* <math>1_V:V\oplus W\rightarrow W</math> with <math>1_W:(v,w)\mapsto w</math>  
+
* <math>1_W:V\oplus W\rightarrow W</math> with <math>1_W:(v,w)\mapsto w</math>  
* <math>P_V:V\oplus W\rightarrow V\oplus W</math> with <math>P_W:(v,w)\mapsto (0_v,w)</math>
+
* <math>P_W:V\oplus W\rightarrow V\oplus W</math> with <math>P_W:(v,w)\mapsto (0_v,w)</math>
 
are all ''canonical'' linear maps
 
are all ''canonical'' linear maps
 +
 
==References==
 
==References==
 
<references/>
 
<references/>
  
 
{{Definition|Linear Algebra|Abstract Algebra}}
 
{{Definition|Linear Algebra|Abstract Algebra}}

Revision as of 18:15, 1 June 2015

Definition

A canonical linear map, or natural linear map, is a linear map that can be stated independently of any basis.[1]

Examples

Identity

Given a vector space (V,F) (for some field F) the linear map given by:

  • 1V:VV given by 1V:vv is a canonical isomorphism from V to itself.
    because it maps v to v irrespective of basis

Projection of direct sum

Consider the vector space VW where denotes the direct sum of vector spaces. The projections defined by:

  • 1V:VWV with 1V:(v,w)v
  • PV:VWVW with PV:(v,w)(v,0w)
  • 1W:VWW with 1W:(v,w)w
  • PW:VWVW with PW:(v,w)(0v,w)

are all canonical linear maps

References

  1. Jump up Linear Algebra via Exterior Algebra - Sergei Wintzki