Difference between revisions of "Canonical linear map"
From Maths
(Created page with "==Definition== A ''canonical'' linear map, or ''natural'' linear map, is a linear map that can be stated independently of any basis.<ref>Linear Algebr...") |
m (→Projection of direct sum: needed to change a letter!) |
||
Line 10: | Line 10: | ||
* <math>1_V:V\oplus W\rightarrow V</math> with <math>1_V:(v,w)\mapsto v</math> | * <math>1_V:V\oplus W\rightarrow V</math> with <math>1_V:(v,w)\mapsto v</math> | ||
* <math>P_V:V\oplus W\rightarrow V\oplus W</math> with <math>P_V:(v,w)\mapsto (v,0_w)</math> | * <math>P_V:V\oplus W\rightarrow V\oplus W</math> with <math>P_V:(v,w)\mapsto (v,0_w)</math> | ||
− | * <math> | + | * <math>1_W:V\oplus W\rightarrow W</math> with <math>1_W:(v,w)\mapsto w</math> |
− | * <math> | + | * <math>P_W:V\oplus W\rightarrow V\oplus W</math> with <math>P_W:(v,w)\mapsto (0_v,w)</math> |
are all ''canonical'' linear maps | are all ''canonical'' linear maps | ||
+ | |||
==References== | ==References== | ||
<references/> | <references/> | ||
{{Definition|Linear Algebra|Abstract Algebra}} | {{Definition|Linear Algebra|Abstract Algebra}} |
Revision as of 18:15, 1 June 2015
Contents
[hide]Definition
A canonical linear map, or natural linear map, is a linear map that can be stated independently of any basis.[1]
Examples
Identity
Given a vector space (V,F) (for some field F) the linear map given by:
- 1V:V→V given by 1V:v↦v is a canonical isomorphism from V to itself.
- because it maps v to v irrespective of basis
Projection of direct sum
Consider the vector space V⊕W where ⊕ denotes the direct sum of vector spaces. The projections defined by:
- 1V:V⊕W→V with 1V:(v,w)↦v
- PV:V⊕W→V⊕W with PV:(v,w)↦(v,0w)
- 1W:V⊕W→W with 1W:(v,w)↦w
- PW:V⊕W→V⊕W with PW:(v,w)↦(0v,w)
are all canonical linear maps
References
- Jump up ↑ Linear Algebra via Exterior Algebra - Sergei Wintzki