Difference between revisions of "Cauchy-Schwarz inequality"
(Created page with "==Statement== For any <math>a_1,...,a_n,b_1,...,b_n\in\mathbb{R}\ </math> we will have<br/> <math>\sum^n_{i=1}a_ib_i\le\sqrt{\sum^n_{i=1}a_i^2}\sqrt{\sum^n_{i=1}b_i^2}</math>...") |
m |
||
Line 41: | Line 41: | ||
[[Category:Useful inequalities]] | [[Category:Useful inequalities]] | ||
− | {{Theorem|Real Analysis}} | + | {{Theorem Of|Real Analysis}} |
Revision as of 07:24, 27 April 2015
Contents
[hide]Statement
For any a1,...,an,b1,...,bn∈R
n∑i=1aibi≤√n∑i=1a2i√n∑i=1b2i
Proof
Basis for argument
Consider first the function f:R→R
If f(x)≥0
As we want f(x)≥0
In the first case (repeated solutions) we require b2−4ac=0
In the second case we require b2−4ac<0
Conclusion of first argument
We conclude from this that if a quadratic ax2+bx+c
Core of argument
In the basis we required a function, f(x)
Take n∑i=1(ait+bi)2
- n∑i=1(ait+bi)2=n∑i=1(a2it2+2taibi+b2i)=t2n∑i=1a2i+2tn∑i=1aibi+n∑i=1b2i- which is a quadratic in t
- ∀ai,bi,t∈R (ait+bi)2≥0, so n∑i=1(ait+bi)2≥0- our quadratic in tis ≥0
Using the above this means b2−4ac≤0
- a=n∑i=1a2i
- b=2n∑i=1aibi
- c=n∑i=1b2i
Conclusion of argument
4(n∑i=1aibi)2−4(n∑i=1a2i)(n∑i=1b2i)≤0
But as x≤|x|
⟺n∑i=1aibi≤√n∑i=1a2i√n∑i=1b2i
QED