Difference between revisions of "Addition of vector spaces"
(Created page with " ==Definitions== {| class="wikitable" border="1" |- ! Name ! Expression ! Notes |- !colspan="3" | Finite |- |rowspan="3" | External direct sum | Given <math>V_1,\cdots,V_n...") |
(No difference)
|
Revision as of 10:22, 24 April 2015
Definitions
| Name | Expression | Notes |
|---|---|---|
| Finite | ||
| External direct sum | Given [math]V_1,\cdots,V_n[/math] which are vector spaces over the same field [ilmath]F[/ilmath]: [math]V=\mathop{\boxplus}^n_{i=1}V_i=\left\{(v_1,\cdots,v_n)|v_i\in V_i,\ i=1,2,\cdots,n\right\}[/math] |
This is the easiest definition, for example [math]\mathbb{R}^n=\mathop{\boxplus}^n_{i=1}\mathbb{R}=\underbrace{\mathbb{R}\boxplus\cdots\boxplus\mathbb{R}}_{n\text{ times}}[/math] Operations: (given [ilmath]u,v\in V[/ilmath] where [ilmath]u_i[/ilmath] and [ilmath]c[/ilmath] is a scalar in [ilmath]F[/ilmath])
|
| Alternative form | ||
| [math]V=\mathop{\boxplus}^n_{i=1}V_i=\left\{\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)\in V_i\ \forall i\in\{1,\cdots,n\}\right\}[/math] | Consider the association: [math](v_1,\cdots,v_n)\mapsto\left[\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)=v_i\ \forall i\right][/math]
Are isomorphic | |
| Sum of vector spaces | Given [ilmath]V_1,\cdots,V_n[/ilmath] which are vector subspaces of [ilmath]V[/ilmath] [math]\sum^n_{i=1}V_i=\left\{v_1+\cdots+v_n|v_i\in V_i,\ i=1,2,\cdots,n\right\}[/math] |
|
| Direct product | Given [math]\mathcal{F}=\left\{V_i|i\in K\right\}[/math] (a family of vector spaces over [ilmath]F[/ilmath]) [math]V=\prod_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K\right\}[/math] | |