Difference between revisions of "User:Harold/AlgTop1"

From Maths
Jump to: navigation, search
m (Alec's formatting)
m (Alec's formatting)
 
(One intermediate revision by the same user not shown)
Line 19: Line 19:
 
\ldots \ar[r] & H_k(S^{n-1}) \ar[r] \ar@2{->}[d]^{i_*} & H_k(B^n) \ar[r] \ar@2{->}[d]^{\text{Id}} & H_k(D^n, S^{n-1}) \ar[r] \ar@{.>}[d]^{i'_*}& H_{k-1}(S^{n-1}) \ar[r] \ar@2{->}[d]^{i_*} & H_{k-1}(B^n) \ar@2{->}[d]^{\text{Id} } \ar[r] & \ldots \\
 
\ldots \ar[r] & H_k(S^{n-1}) \ar[r] \ar@2{->}[d]^{i_*} & H_k(B^n) \ar[r] \ar@2{->}[d]^{\text{Id}} & H_k(D^n, S^{n-1}) \ar[r] \ar@{.>}[d]^{i'_*}& H_{k-1}(S^{n-1}) \ar[r] \ar@2{->}[d]^{i_*} & H_{k-1}(B^n) \ar@2{->}[d]^{\text{Id} } \ar[r] & \ldots \\
 
\ldots \ar[r] & H_k(B^n-\{0\}) \ar[r] & H_k(B^n) \ar[r] & H_k(D^n, B^n-\{0\}) \ar[r] & H_{k-1}(B^n-\{0\}) \ar[r] & H_{k-1}(B^n) \ar[r] & ...
 
\ldots \ar[r] & H_k(B^n-\{0\}) \ar[r] & H_k(B^n) \ar[r] & H_k(D^n, B^n-\{0\}) \ar[r] & H_{k-1}(B^n-\{0\}) \ar[r] & H_{k-1}(B^n) \ar[r] & ...
 +
}</m></span></center>
 +
|-
 +
! Diagram
 +
|}
 +
<!--
 +
<harrynoob>  ... -> H_k(B^n\0) -> H_k(B^n) -> H_k(B^n, B^n\0) -> H_k-1(B^n\0) -> H_k-1(B^n) -> ...
 +
<harrynoob> ... -> H_k(R^n\0) -> H_k(R^n) -> H_k(R^n, R^n\0) -> H_k-1(R^n\0) -> H_k-1(R^n) -> ...
 +
-->
 +
{| class="wikitable" border="1" style="overflow:hidden;"
 +
|-
 +
| <center><span style="font-size:1.2em;"><m>\xymatrix{
 +
\ldots \ar[r] & H_k(B^n-\{0\}) \ar[r] \ar[d]^{\text{?} } & H_k(B^n) \ar[r] \ar[d]^{\text{?}} & H_k(B^n, B^n-\{0\}) \ar[r] \ar@{.>}[d]^{\text{?} }& H_{k-1}(B^n-\{0\}) \ar[r] \ar[d]^{\text{?} } & H_{k-1}(B^n) \ar[d]^{\text{?} } \ar[r] & \ldots \\
 +
\ldots \ar[r] & H_k(\mathbb{R}^n-\{0\}) \ar[r] & H_k(\mathbb{R}^n) \ar[r] & H_k(\mathbb{R}^n, R^n-\{0\}) \ar[r] & H_{k-1}(\mathbb{R}^n-\{0\}) \ar[r] & H_{k-1}(\mathbb{R}^n) \ar[r] & ...
 
}</m></span></center>
 
}</m></span></center>
 
|-
 
|-
 
! Diagram
 
! Diagram
 
|}
 
|}

Latest revision as of 22:57, 21 February 2017

Problem statement

Let n1. We show that the map Hk(Bn,Sn1)Hk(Bn,Bn{0}) by the inclusion i:Sn1Bn{0} is an isomorphism.

Tools

First we show that the map Hk(Sn1)Hk(Bn{0}) induced by the inclusion i:Sn1Bn{0} is an isomorphism, for k0. Note that Sn1 is a retract of Bn{0}.

  • Define the map r:Bn{0}Sn1 by r:xx||x||, where ||x|| denotes the norm of x.
  • Then ri=idSn1.
  • So i:Sn1Bn{0} is a monomorphism.
  • Also, ir is homotopy equivalent to the identity map on Bn{0}. [left as an exercise to the reader]

Final proof

Alec's formatting

Diagram
Diagram