Difference between revisions of "Canonical linear map"
From Maths
(Created page with "==Definition== A ''canonical'' linear map, or ''natural'' linear map, is a linear map that can be stated independently of any basis.<ref>Linear Algebr...") |
(Marking as stub, added reminder to add example) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{Stub page|grade=A*|msg=Important for work, needs work anyway. Be sure to link | ||
+ | * [[Example:Canonical linear isomorphism between a one dimensional vector space and its field]]}} | ||
+ | __TOC__ | ||
==Definition== | ==Definition== | ||
A ''canonical'' [[Linear map|linear map]], or ''natural'' linear map, is a linear map that can be stated independently of any [[Basis|basis]].<ref>Linear Algebra via Exterior Algebra - Sergei Wintzki</ref> | A ''canonical'' [[Linear map|linear map]], or ''natural'' linear map, is a linear map that can be stated independently of any [[Basis|basis]].<ref>Linear Algebra via Exterior Algebra - Sergei Wintzki</ref> | ||
Line 7: | Line 10: | ||
*: because it maps {{M|v}} to {{M|v}} irrespective of basis | *: because it maps {{M|v}} to {{M|v}} irrespective of basis | ||
====Projection of direct sum==== | ====Projection of direct sum==== | ||
− | Consider the vector space {{M|V\oplus W}} where {{M|\oplus}} denotes the [[ | + | Consider the vector space {{M|V\oplus W}} where {{M|\oplus}} denotes the [[External direct sum|external direct sum]] of vector spaces. The [[Projector|projections]] defined by: |
* <math>1_V:V\oplus W\rightarrow V</math> with <math>1_V:(v,w)\mapsto v</math> | * <math>1_V:V\oplus W\rightarrow V</math> with <math>1_V:(v,w)\mapsto v</math> | ||
* <math>P_V:V\oplus W\rightarrow V\oplus W</math> with <math>P_V:(v,w)\mapsto (v,0_w)</math> | * <math>P_V:V\oplus W\rightarrow V\oplus W</math> with <math>P_V:(v,w)\mapsto (v,0_w)</math> | ||
− | * <math> | + | * <math>1_W:V\oplus W\rightarrow W</math> with <math>1_W:(v,w)\mapsto w</math> |
− | * <math> | + | * <math>P_W:V\oplus W\rightarrow V\oplus W</math> with <math>P_W:(v,w)\mapsto (0_v,w)</math> |
are all ''canonical'' linear maps | are all ''canonical'' linear maps | ||
+ | |||
==References== | ==References== | ||
<references/> | <references/> | ||
{{Definition|Linear Algebra|Abstract Algebra}} | {{Definition|Linear Algebra|Abstract Algebra}} |
Latest revision as of 05:54, 7 December 2016
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Important for work, needs work anyway. Be sure to link
Contents
[hide]Definition
A canonical linear map, or natural linear map, is a linear map that can be stated independently of any basis.[1]
Examples
Identity
Given a vector space (V,F) (for some field F) the linear map given by:
- 1V:V→Vgiven by 1V:v↦vis a canonical isomorphism from V to itself.
- because it maps v to v irrespective of basis
Projection of direct sum
Consider the vector space V⊕W where ⊕ denotes the external direct sum of vector spaces. The projections defined by:
- 1V:V⊕W→Vwith 1V:(v,w)↦v
- PV:V⊕W→V⊕Wwith PV:(v,w)↦(v,0w)
- 1W:V⊕W→Wwith 1W:(v,w)↦w
- PW:V⊕W→V⊕Wwith PW:(v,w)↦(0v,w)
are all canonical linear maps
References
- Jump up ↑ Linear Algebra via Exterior Algebra - Sergei Wintzki