Difference between revisions of "Semantics of terms (FOL)"

From Maths
Jump to: navigation, search
(Created page with "{{Stub page|grade=A|msg=Created to save me sifting through notes or scouring PDFs, needs fleshing out}} __TOC__ ==Definition== Given a first order language, {{M|\mathscr{L...")
 
m (Definition: Defined to be equal, added : to make :=)
 
Line 3: Line 3:
 
==Definition==
 
==Definition==
 
Given a [[first order language]], {{M|\mathscr{L} }} and a {{link|model|FOL}}, {{M|(\mathbf{M},\sigma)}} of {{M|\mathscr{L} }} also, the {{link|semantics|FOL}} of a {{link|term|FOL}}, {{M|t\in\mathscr{L}_T}}, which we denote by {{M|t_{\mathbf{M}[\sigma]} }} is [[inductive definition|defined inductively]] as follows{{rMLFFISWL}}:
 
Given a [[first order language]], {{M|\mathscr{L} }} and a {{link|model|FOL}}, {{M|(\mathbf{M},\sigma)}} of {{M|\mathscr{L} }} also, the {{link|semantics|FOL}} of a {{link|term|FOL}}, {{M|t\in\mathscr{L}_T}}, which we denote by {{M|t_{\mathbf{M}[\sigma]} }} is [[inductive definition|defined inductively]] as follows{{rMLFFISWL}}:
# If {{M|x}} is a {{link|variable symbol|FOL}} then: {{M|1=x_{\mathbf{M}[\sigma]}=\sigma(x)}}
+
# If {{M|x}} is a {{link|variable symbol|FOL}} then: {{M|1=x_{\mathbf{M}[\sigma]}:=\sigma(x)}}
# If {{M|c}} is a {{link|constant symbol|FOL}} then: {{M|1=c_{\mathbf{M}[\sigma]}=c_\mathbf{M} }} (recall {{M|c_\mathbf{M} }} denotes {{M|I(c)}} where {{M|I}} is an {{link|interpretation|FOL}})
+
# If {{M|c}} is a {{link|constant symbol|FOL}} then: {{M|1=c_{\mathbf{M}[\sigma]}:=c_\mathbf{M} }} (recall {{M|c_\mathbf{M} }} denotes {{M|I(c)}} where {{M|I}} is an {{link|interpretation|FOL}})
 
# If {{M|f}} is an ''[[arity|{{n|ary}}]]'' {{link|function symbol|FOL}} and {{M|t_1,\ldots,t_n\in\mathscr{L}_T}} are {{link|term|FOL|s}} then: {{M|1=(ft_1\cdots t_n)_{\mathbf{M}[\sigma]}:=f_\mathbf{M}((t_1)_{\mathbf{M}[\sigma]},\ldots,(t_n)_{\mathbf{M}[\sigma]})}} (recall {{M|f_\mathbf{M} }} denotes {{M|I(f)}} where {{M|I}} is an {{link|interpretation|FOL}})
 
# If {{M|f}} is an ''[[arity|{{n|ary}}]]'' {{link|function symbol|FOL}} and {{M|t_1,\ldots,t_n\in\mathscr{L}_T}} are {{link|term|FOL|s}} then: {{M|1=(ft_1\cdots t_n)_{\mathbf{M}[\sigma]}:=f_\mathbf{M}((t_1)_{\mathbf{M}[\sigma]},\ldots,(t_n)_{\mathbf{M}[\sigma]})}} (recall {{M|f_\mathbf{M} }} denotes {{M|I(f)}} where {{M|I}} is an {{link|interpretation|FOL}})
 +
 
==See next==
 
==See next==
 
* {{Link|Semantics of logical connectives|FOL}}
 
* {{Link|Semantics of logical connectives|FOL}}

Latest revision as of 07:49, 10 September 2016

Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Created to save me sifting through notes or scouring PDFs, needs fleshing out

Definition

Given a first order language, L and a model, (M,σ) of L also, the semantics of a term, tLT, which we denote by tM[σ] is defined inductively as follows[1]:

  1. If x is a variable symbol then: xM[σ]:=σ(x)
  2. If c is a constant symbol then: cM[σ]:=cM (recall cM denotes I(c) where I is an interpretation)
  3. If f is an n-ary function symbol and t1,,tnLT are terms then: (ft1tn)M[σ]:=fM((t1)M[σ],,(tn)M[σ]) (recall fM denotes I(f) where I is an interpretation)

See next

References

  1. Jump up Mathematical Logic - Foundations for Information Science - Wei Li

Template:Formal logic navbox